Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2011 (2011), Article ID 864358, 6 pages
http://dx.doi.org/10.4061/2011/864358
Research Article

Voltammetric Determination of Captopril Using Chlorpromazine as a Homogeneous Mediator

Department of Chemistry, Razi University, Bagh Abrisham, Kermanshah 67149-67346, Iran

Received 6 August 2011; Accepted 22 August 2011

Academic Editor: Jay D. Wadhawan

Copyright © 2011 Hossein Bahramipur and Fahimeh Jalali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Forey, Ed., Analytical Profiles of Drugs Substances, vol. 11, Academic Press, New York, NY, USA, 1982.
  2. J. Koch-Weser, “Angiotensin converting-enzyme inhibitor in refractory hypertension,” The New England Journal of Medicine, vol. 299, no. 7, pp. 363–364, 1978. View at Google Scholar · View at Scopus
  3. N. Aykin, R. Neal, M. Yusof, and N. Ercal, “Determination of captopril in biological samples by high-performance liquid chromatography with ThiGlo3 derivatization,” Biomedical Chromatography, vol. 15, no. 7, pp. 427–432, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. M. Pimenta, A. N. Araújo, and M. C. B. S. M. Montenegro, “Sequential injection analysis of captopril based on colorimetric and potentiometric detection,” Analytica Chimica Acta, vol. 438, no. 1-2, pp. 31–38, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Mirza and H. S. Tan, “Determination of captopril in pharmaceutical tablets by anion-exchange HPLC using indirect photometric detection; a study in systematic method development,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 1, pp. 39–52, 2001. View at Publisher · View at Google Scholar
  6. J. Russell, J. A. McKeown, C. Hensman, W. E. Smith, and J. Reglinski, “HPLC determination of biologically active thiols using pre-column derivatisation with 5,5'-dithio-(bis-2-nitrobenzoic acid),” Journal of Pharmaceutical and Biomedical Analysis, vol. 15, no. 11, pp. 1757–1763, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Amini, A. Zarghi, and H. Vatanpour, “Sensitive high-performance liquid chromatographic method for determination of captopril in plasma,” Pharmaceutica Acta Helvetiae, vol. 73, no. 6, pp. 303–306, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Khedr and H. El-Sherief, “3-bromomethyl-propyphenazone as a new derivatization reagent for high performance liquid chromatography of captopril and hydrochlorothiazide with UV- detection,” Biomedical Chromatography, vol. 12, no. 2, pp. 57–60, 1998. View at Publisher · View at Google Scholar
  9. M. Bahmaei, A. Khosravi, C. Zamiri, A. Massoumi, and M. Mahmoudian, “Determination of captopril in human serum by high performance liquid chromatography using solid-phase extraction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 15, no. 8, pp. 1181–1186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Ito, Y. Matsuki, H. Kurihara, and T. Nambara, “Sensitive method for determination of captopril in biological fluids by gas chromatography-mass spectrometry,” Journal of Chromatography, vol. 417, no. 1, pp. 79–87, 1987. View at Google Scholar
  11. Y. C. Liu, H. L. Wu, H. S. Kou, S. H. Chen, and S. M. Wu, “Derivatization-Gas Chromatographic Determination of Captopril,” Analytical Letters, vol. 28, pp. 1465–1481, 1995. View at Google Scholar
  12. K. M. .Emara K.M., H. F. Askal, and G. A. Saleh, “Spectrophotometric determination of tetracycline and oxytetracycline in pharmaceutical preparations,” Talanta, vol. 38, no. 11, pp. 1219–1222, 1991. View at Google Scholar · View at Scopus
  13. H. Kadin and R. B. Poet, “Sequential electrochemical reduction, solvent partition, and automated thiol colorimetry for urinary captopril and its disulfides,” Journal of Pharmaceutical Sciences, vol. 71, no. 10, pp. 1134–1138, 1982. View at Google Scholar · View at Scopus
  14. K. Imai, T. Toyo'oka, and Y. Watanabe, “A novel fluorogenic reagent for thiols: ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate,” Analytical Biochemistry, vol. 128, no. 2, pp. 471–473, 1983. View at Google Scholar · View at Scopus
  15. S. M. Al-Ghannam, A. M. El-Brashy, and B. S. Al-Farhan, “Fluorimetric determination of some thiol compounds in their dosage forms,” Farmaco, vol. 57, no. 8, pp. 625–629, 2002. View at Publisher · View at Google Scholar
  16. Y. Chen and R. Cai, “Study and analytical application of inhibitory effect of captopril on multienzyme redox system,” Talanta, vol. 61, no. 6, pp. 855–861, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. K. Wong, S. Lan, and B. H. Migdalof, “In vitro biotransformations of [14C]captopril in the blood of rats, dogs and humans,” Biochemical Pharmacology, vol. 30, no. 19, pp. 2643–2650, 1981. View at Publisher · View at Google Scholar · View at Scopus
  18. X. R. Zhang, W. R. G. Baeyens, G. Van Der Weken, A. C. Calokerinos, and K. Nakashima, “Chemiluminescence determination of captopril based on a Rhodamine B sensitized cerium(IV) method,” Analytica Chimica Acta, vol. 303, no. 1, pp. 121–125, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Economou, D. G. Themelis, G. Theodoridis, and P. D. Tzanavaras, “Sensitive determination of captopril by flow injection analysis with chemiluminescence detection based on the enhancement of the luminol reaction,” Analytica Chimica Acta, vol. 463, no. 2, pp. 249–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. M. Pulgarín, L. F. G. Bermejo, and P. F. López, “Sensitive determination of captopril by time-resolved chemiluminescence using the stopped-flow analysis based on potassium permanganate oxidation,” Analytica Chimica Acta, vol. 546, no. 1, pp. 60–67, 2005. View at Publisher · View at Google Scholar
  21. M. A. El Reis, F. M. Abou Attia, and I. M. M. Kenawy, “Indirect determination of captopril by AAS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 23, no. 2-3, pp. 249–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mazurek and R. Szostak, “Quantitative determination of captopril and prednisolone in tablets by FT-Raman spectroscopy,” Journal of Pharmaceutical and Biomedical Analysis, vol. 40, no. 5, pp. 1225–1230, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. S. Hillaert and W. Van Den Bossche, “Determination of captopril and its degradation products by capillary electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 21, no. 1, pp. 65–73, 1999. View at Publisher · View at Google Scholar
  24. T. Pérez-Ruiz, C. Martínez-Lozano, and R. Galera, “Development and validation of a capillary electrophoresis method with laser-induced fluorescence detection for the determination of captopril in human urine and pharmaceutical preparations,” Electrophoresis, vol. 27, no. 12, pp. 2310–2316, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. I. Stefan, J. F. van Staden, and H. Y. Aboul-Enein, “An amperometric biosensors/SIA system for the simultaneous determination of S- and R-captopril,” Biosensors and Bioelectronics, vol. 15, no. 1-2, pp. 1–5, 2000. View at Google Scholar
  26. X. Ioannides, A. Economou, and A. Voulgaropoulos, “A study of the determination of the hypertensive drug captopril by square wave cathodic adsorptive stripping voltammetry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 33, no. 2, pp. 309–316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Rezaei and S. Damiri, “Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril,” Sensors and Actuators, B, vol. 134, no. 1, pp. 324–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Karimi-Maleh, A. A. Ensafi, and A. R. Allafchian, “Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode,” Journal of Solid State Electrochemistry, vol. 14, no. 1, pp. 9–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Khalilzadeh, H. Karimi-Maleh, A. Amiri, F. Gholami, and R. M. mazhabi, “Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode,” Chinese Chemical Letters, vol. 21, no. 12, pp. 1467–1470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Fouladgar, “Electrocatalytic measurement of trace amount of captopril using multiwall carbon nanotubes as a sensor and ferrocene as a mediator,” International Journal of Electrochemical Science, vol. 6, no. 3, pp. 705–716, 2011. View at Google Scholar
  31. K. Takamura, S. Inoue, F. Kusu, and N. Oyama, “Electrocatalytic oxidation of chlorpromazine in phosphate solution,” Bulletin of the Chemical Society of Japan, vol. 58, no. 3, pp. 987–990, 1985. View at Google Scholar · View at Scopus
  32. A. Bard and L. Folkner, Electrochemical Methods: Principles and Applications, John Wiley & Sons, New York, NY, USA, 2nd edition, 2001.
  33. A. Salimi, S. Lasghari, and A. Noorbakhash, “Carbon nanotubes-ionic liquid and chloropromazine modified electrode for determination of NADH and fabrication of ethanol biosensor,” Electroanalysis, vol. 22, no. 15, pp. 1707–1716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, and M. Nejati, “Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode,” Bioelectrochemistry, vol. 75, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. Z. Galus, Fundumentals of Electrochemical Analysis, Ellis Horwood, New York, NY, USA, 1976.