Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2012 (2012), Article ID 276246, 6 pages
http://dx.doi.org/10.1155/2012/276246
Research Article

Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

Bioinspired Materials Science Laboratory, Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007, India

Received 29 July 2012; Accepted 5 October 2012

Academic Editor: Ujjal Kumar Sur

Copyright © 2012 Ujjwala Gaware et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, no. 6592, pp. 607–609, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Ankamwar, M. Chaudhary, and M. Sastry, “Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 35, no. 1, pp. 19–26, 2005. View at Publisher · View at Google Scholar
  3. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, no. 5460, pp. 1989–1992, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, “Forming electrical networks in three dimensions by self-assembly,” Science, vol. 289, no. 5482, pp. 1170–1172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science, vol. 281, no. 5383, pp. 1647–1650, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Masatake, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications,” Gold Bulletin, vol. 37, no. 1-2, pp. 27–36, 2004. View at Publisher · View at Google Scholar
  7. J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small, vol. 5, no. 6, pp. 646–664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Y. Song, E. Y. Kwon, and B. S. Kim, “Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extractBioprocess and Biosystems Engineering,” vol. 33, pp. 159–164, 2010. View at Google Scholar
  9. J. Y. Song and B. S. Kim, “Rapid biological synthesis of silver nanoparticles using plant leaf extracts,” Bioprocess and Biosystems Engineering, vol. 32, pp. 79–84, 2009. View at Publisher · View at Google Scholar
  10. J. Kasthuri, K. Kathiravan, and N. Rajendiran, “Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach,” Journal of Nanoparticle Research, vol. 11, no. 5, pp. 1075–1085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Singh, M. Talat, D. P. Singh, and O. N. Srivastava, “Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1667–1675, 2010. View at Publisher · View at Google Scholar
  12. J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman, “Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles,” Langmuir, vol. 19, no. 4, pp. 1357–1361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, “Biological synthesis of triangular gold nanoprisms,” Nature Materials, vol. 3, no. 7, pp. 482–488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Ankamwar, C. Damle, A. Ahmad, and M. Sastry, “Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1665–1671, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Ankamwar, “Biosynthesis of gold nanoparticles (Green-Gold) using leaf extract of Terminalia Catappa,” E-Journal of Chemistry, vol. 7, no. 4, pp. 1334–1339, 2010. View at Google Scholar · View at Scopus
  16. B. Ankamwar, Biosynthesis: An Eco-Friendly Approach of Nanomaterials Synthesis, Chemical and Biomedical Applications, VDM, 2010.
  17. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” The Journal of Physical Chemistry B, vol. 88, no. 24, pp. 5935–5944, 1984. View at Publisher · View at Google Scholar
  18. X. M. Dou, Y. M. Jung, Z. Q. Cao, and Y. Ozaki, “Surface-enhanced raman scattering of biological molecules on metal colloid II: effects of aggregation of gold colloid and comparison of effects of ph of glycine solutions between gold and silver colloids,” Applied Spectroscopy, vol. 53, no. 11, pp. 1440–1447, 1999. View at Publisher · View at Google Scholar
  19. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Physical Review E, vol. 62, pp. 4318–4324, 2000. View at Publisher · View at Google Scholar
  20. A. Sabur, M. Havel, and Y. Gogotsi, “SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles,” Journal of Raman Spectroscopy, vol. 39, no. 1, pp. 61–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Ž. Krpetić, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and sers-based multimodal trace detection of Ni(II) Ions with functional gold nanoparticles,” Small, vol. 8, pp. 707–714, 2012. View at Publisher · View at Google Scholar
  22. H. W. Cheng and R. Q. Yu, “Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores,” Analyst, vol. 137, pp. 3601–3608, 2012. View at Publisher · View at Google Scholar
  23. G. V. Pavankumar, “Gold nanoparticle-coated biomaterial as SERS micro-probes,” Bulletin of Materials Science, vol. 34, no. 3, pp. 417–422, 2011. View at Publisher · View at Google Scholar
  24. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir, vol. 12, no. 3, pp. 788–800, 1996. View at Google Scholar · View at Scopus
  25. E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schatz, “Synthesis of silver nanodisks using polystyrene mesospheres as templates,” Journal of the American Chemical Society, vol. 124, no. 51, pp. 15182–15183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, and L. M. Liz-Marzán, “Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions,” Langmuir, vol. 18, no. 9, pp. 3694–3697, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Shao, Y. Jin, and S. Dong, “Synthesis of gold nanoplates by aspartate reduction of gold chloride,” Chemical Communications, vol. 10, no. 9, pp. 1104–1105, 2004. View at Google Scholar · View at Scopus
  28. S. Chen and D. L. Carroll, “Synthesis and characterization of truncated triangular silver nanoplates,” Nano Letters, vol. 2, no. 9, pp. 1003–1007, 2002. View at Google Scholar
  29. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science, vol. 294, no. 5548, pp. 1901–1903, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides, “Ordering of spontaneously formed buckles on planar surfaces,” Langmuir, vol. 16, no. 7, pp. 3497–3501, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” The Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar
  32. Y. L. Luo, “Large-scale preparation of single-crystalline gold nanoplates,” Materials Letters, vol. 61, no. 6, pp. 1346–1349, 2007. View at Publisher · View at Google Scholar
  33. K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” The Journal of Chemical Physics, vol. 123, no. 11, pp. 114713–114722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Advanced Materials, vol. 17, no. 4, pp. 412–415, 2005. View at Publisher · View at Google Scholar
  35. K. Sneha, M. Sathishkumar, S. Kim, and Y. S. Yun, “Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles,” Process Biochemistry, vol. 45, no. 9, pp. 1450–1458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Krishnamurthi, Ed., The Wealth of India, A Dictionary of Indian Raw Materials & Industrial Products, vol. 8 of Raw Materials, National Institute of Science Communication, CSIR, New Delhi, India, 1998.
  37. V. Patil, R. B. Malvankar, and M. Sastry, “Role of particle size in individual and competitive diffusion of carboxylic acid derivatized colloidal gold particles in thermally evaporated fatty amine films,” Langmuir, vol. 15, no. 23, pp. 8197–8206, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. D. V. Leff, L. Brandt, and J. R. Heath, “Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines,” Langmuir, vol. 12, no. 20, pp. 4723–4730, 1996. View at Google Scholar · View at Scopus
  39. P. Raveendran, J. Fu, and S. L. Wallen, “Completely “green" synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. L. R. Hirsch, R. J. Stafford, J. A. Bankson et al., “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13549–13554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” Journal of the American Chemical Society, vol. 127, no. 15, pp. 5312–5313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Xue and C. A. Mirkin, “pH-switchable silver nanoprism growth pathways,” Angewandte Chemie International Edition, vol. 46, no. 12, pp. 2036–2038, 2007. View at Publisher · View at Google Scholar
  43. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature, vol. 425, no. 6957, pp. 487–490, 2003. View at Publisher · View at Google Scholar · View at Scopus