Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2012 (2012), Article ID 502707, 14 pages
http://dx.doi.org/10.1155/2012/502707
Review Article

Prospects of Organic Conducting Polymer Modified Electrodes: Enzymosensors

Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India

Received 31 July 2011; Accepted 2 January 2012

Academic Editor: Benjamín R. Scharifker

Copyright © 2012 Ravindra P. Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Liu, K. Ge, K. Chen, L. Nie, and S. Yao, “Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds,” Analytica Chimica Acta, vol. 307, no. 1, pp. 61–69, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Mascini, “Enzyme-based optical-fibre biosensors,” Sensors and Actuators B, vol. 29, no. 1–3, pp. 121–125, 1995. View at Google Scholar · View at Scopus
  3. X. Xie, A. A. Suleiman, and G. G. Guilbault, “Determination of urea in serum by a fiber-optic fluorescence biosensor,” Talanta, vol. 38, no. 10, pp. 1197–1200, 1991. View at Google Scholar · View at Scopus
  4. S. B. Adeloju, S. J. Shaw, and G. G. Wallace, “Polypyrrole-based potentiometric biosensor for urea: part 1. Incorporation of urease,” Analytica Chimica Acta, vol. 281, no. 3, pp. 611–620, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Adeloju, S. J. Shaw, and G. G. Wallace, “Polypyrrole-based potentiometric biosensor for urea: part 2. Analytical optimisation,” Analytica Chimica Acta, vol. 281, no. 3, pp. 621–627, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Esteve and S. Alegret, “The modern student laboratory: a practical approach to chemical sensors through potentiometric transducers: determination of urea in serum by means of a biosensor,” Journal of Chemical Education, vol. 71, no. 3, pp. A67–A70, 1994. View at Google Scholar · View at Scopus
  7. D. Liu, M. E. Meyerhoff, H. D. Goldberg, and R. B. Brown, “Potentiometric ion- and bioselective electrodes based on asymmetric polyurethane membranes,” Analytica Chimica Acta, vol. 274, no. 1, pp. 37–46, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Chen, D. Liu, L. Nie, and S. Yao, “Determination of urea in urine using a conductivity cell with surface acoustic wave resonator-based measurement circuit,” Talanta, vol. 41, no. 12, pp. 2195–2200, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Jdanova, S. Poyard, A. P. Soldatkin, N. Jaffrezic-Renault, and C. Martelet, “Conductometric urea sensor: use of additional membranes for the improvement of its analytical characteristics,” Analytica Chimica Acta, vol. 321, no. 1, pp. 35–40, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. R. P. Singh, Y. J. Kim, B. K. Oh, and J. W. Choi, “Glutathione-s-transferase based electrochemical biosensor for the detection of captan,” Electrochemistry Communications, vol. 11, pp. 181–185, 2009. View at Google Scholar
  11. R. E. Adams, “Coulometric flow analyzer for use with immobilized enzyme reactors,” Analytical Chemistry, vol. 50, no. 7, pp. 944–950, 1978. View at Google Scholar · View at Scopus
  12. S. B. Adeloju, S. J. Shaw, and G. G. Wallace, “Polypyrrole-based amperometric flow injection biosensor for urea,” Analytica Chimica Acta, vol. 323, no. 1–3, pp. 107–113, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. W. O. Ho, S. Krause, C. J. McNeil et al., “Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation,” Analytical Chemistry, vol. 71, no. 10, pp. 1940–1946, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. R. P. Singh, B. K. Oh, K. K. Koo, J. Y. Jyoung, S. Jeong, and J. W. Choi, “Biosensor arrays for environmental pollutants detection,” Biochip Journal, vol. 2, no. 4, pp. 223–234, 2009. View at Google Scholar · View at Scopus
  15. R. P. Singh, D. Y. Kang, B. K. Oh, and J. W. Choi, “Polyaniline based catalase biosensor for the detection of hydrogen peroxide and azide,” Biotechnology and Bioprocess Engineering, vol. 14, no. 4, pp. 443–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Pure and Applied Chemistry, vol. 71, pp. 2333–2348, 1999. View at Google Scholar
  17. R. P. Singh, B. K. Oh, and J. W. Choi, “Application of peptide nucleic acid towards development of nanobiosensor arrays,” Bioelectrochemistry, vol. 79, no. 2, pp. 153–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. Singh, D. Y. Kang, and J. W. Choi, “Nanofabrication of bio-self assembled monolayer and its electrochemical property for toxicant detection,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 1, pp. 408–412, 2011. View at Publisher · View at Google Scholar
  19. L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of Sciences, vol. 102, pp. 29–45, 1962. View at Google Scholar · View at Scopus
  20. L. Murphy, “Biosensors and bioelectrochemistry,” Current Opinion in Chemical Biology, vol. 10, no. 2, pp. 177–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Hartmann, “Ordered mesoporous materials for bioadsorption and biocatalysis,” Chemistry of Materials, vol. 17, no. 18, pp. 4577–4593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. Ivory, G. G. Miller, J. M. Sowa, L. W. Shacklette, R. R. Chance, and R. H. Baughman, “Highly conducting charge-transfer complexes of poly(p-phenylene),” The Journal of Chemical Physics, vol. 71, no. 3, pp. 1506–1507, 1979. View at Google Scholar · View at Scopus
  23. H. H. Weetall, A. Druzhko, A. R. de Lera, R. Alvarez, and B. Robertson, “Measurement of proton release and uptake by analogs of bacteriorhodopsin,” Bioelectrochemistry and Bioenergetics, vol. 51, no. 1, pp. 27–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Zinger and L. L. Miller, “Timed release of chemicals from polypyrrole films,” Journal of the American Chemical Society, vol. 106, no. 22, pp. 6861–6863, 1984. View at Google Scholar · View at Scopus
  25. N. Gupta, S. Sharma, I. A. Mir, and D. Kumar, “Advances in sensors based on conducting polymers,” Journal Scientific and Industrial Research, vol. 65, no. 7, pp. 549–557, 2006. View at Google Scholar
  26. B. Adhikari and S. Majumdar, “Polymer in sensor applications,” Progress in Polymer Science, vol. 29, no. 7, pp. 699–766, 2004. View at Google Scholar
  27. J. Tschmelak, G. Proll, J. Riedt et al., “Automated Water Analyser Computer Supported System (AWACSS) part I: project objectives, basic technology, immunoassay development, software design and networking,” Biosensors and Bioelectronics, vol. 20, no. 8, pp. 1499–1508, 2005. View at Publisher · View at Google Scholar
  28. M. Gerard, A. Chaubey, and B. D. Malhotra, “Application of conducting polymers to biosensors,” Biosensors and Bioelectronics, vol. 17, no. 5, pp. 345–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Park, “Electrochemistry of p-conjugated polymers,” in Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., vol. 3, pp. 429–469, Wiley, Chichester, UK, 1997. View at Google Scholar
  30. P. N. Bartlett and J. M. Cooper, “A review of the immobilized enzymes in electropolymerized films,” Journal Electroanalytical Chemistry, vol. 362, no. 1-2, pp. 1–12, 1993. View at Google Scholar
  31. W. Li, H. Zhao, and G. G. Wallace, “Pulsed electrochemical detection of proteins using conducting polymer sensors,” Analytica Chimica Acta, vol. 315, no. 1-2, pp. 27–32, 1995. View at Google Scholar
  32. D. S. Park, Y. B. Shim, and S. M. Park, “Degradation of electrochemically prepared polypyrrole in aqueous sulfuric acid,” Journal of The Electrochemical Society, vol. 140, no. 3, pp. 609–614, 1993. View at Publisher · View at Google Scholar
  33. P. Blanchard, P. Leriche, P. Frere, and J. Roncali, “Advanced functional polythiophene based on tailored precursors,” in Handbook of Conducting Polymers, Conjugated polymers, T. A. Skotheim and J. R. Reynolds, Eds., chapter 13, pp. 1–77, CRC Press, Bocaraton, Fla, USA, 3rd edition, 2006. View at Google Scholar
  34. R. P. Singh and J. W. Choi, “Biosensors development based on potential target of conducting polymers,” Sensors & Transducers Journal, vol. 104, no. 5, pp. 1–18, 2009. View at Google Scholar
  35. M. Jeffries-El and D. Mccullough, “Regioregular polythiophene,” in Handbook of Conducting Polymers, Conjugated Polymers, T. A. Skotheim and J. R. Reynolds, Eds., chapter 9, pp. 1–49, CRC Press, Bocaraton, Fla, USA, 3rd edition, 2006. View at Google Scholar
  36. J. W. Lee, D. S. Park, Y. B. Shim, and S. M. Park, “Electrochemical characterization of poly(1,8-diaminonaphthalene): a functionalized polymer,” Journal of the Electrochemical Society, vol. 139, no. 12, pp. 3507–3514, 1992. View at Google Scholar · View at Scopus
  37. E. W. Paul, A. J. Ricco, and M. S. Wrighton, “Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices,” Journal of Physical Chemistry, vol. 89, no. 8, pp. 1441–1447, 1985. View at Google Scholar · View at Scopus
  38. A. Mulchandani and C. L. Wang, “Bienzyme sensors based on poly(anilinomethylferrocene)-modified electrodes,” Electroanalysis, vol. 8, no. 5, pp. 414–419, 1996. View at Google Scholar · View at Scopus
  39. P. N. Bartlett and R. G. Whitaker, “Strategies for the development of amperometric enzyme electrodes,” Biosensors, vol. 3, no. 6, pp. 359–379, 1987. View at Google Scholar · View at Scopus
  40. A. Ramanaviciene and A. Ramanavicius, Advanced Biomaterials for Medical Applications, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2004.
  41. A. Malinauskas, J. Malinauskiene, and A. Ramanavičius, “Conducting polymer-based nanostructurized materials: electrochemical aspects,” Nanotechnology, vol. 16, no. 10, pp. R51–R62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Schuhmann, R. Lammert, B. Uhe, and H. L. Schmidt, “Polypyrrole, a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors,” Sensors and Actuators B, vol. 1, no. 1–6, pp. 537–541, 1990. View at Google Scholar · View at Scopus
  43. L. Gorton, A. Lindgren, T. Larsson, F. D. Munteanu, T. Ruzgas, and I. Gazaryan, “Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors,” Analytica Chimica Acta, vol. 400, no. 1–3, pp. 91–108, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Schuhmann, “Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures,” Reviews in Molecular Biotechnology, vol. 82, no. 4, pp. 425–441, 2002. View at Publisher · View at Google Scholar
  45. T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-fimctionalized carbon nanotubes for binding to polymers and biological systems,” Chemistry of Materials, vol. 17, no. 6, pp. 1290–1295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Carrara, V. Bavastrello, D. Ricci, E. Stura, and C. Nicolini, “Improved nanocomposite materials for biosensor applications investigated by electrochemical impedance spectroscopy,” Sensors and Actuators B, vol. 109, no. 2, pp. 221–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. I. Anzai, T. Hoshi, and T. Osa, “Avidin-biotin complexation for enzyme sensor applications,” Trends in Analytical Chemistry, vol. 13, no. 5, pp. 205–210, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Nobs, F. Buchegger, R. Gurny, and E. Allémann, “Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 3, pp. 483–490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Gref, P. Couvreur, G. Barratt, and E. Mysiakine, “Surface-engineered nanoparticles for multiple ligand coupling,” Biomaterials, vol. 24, no. 24, pp. 4529–4537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sensors and Actuators B, vol. 91, no. 1–3, pp. 117–127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. R. A. Doong, H. M. Shih, and S. H. Lee, “Sol-gel-derived array DNA biosensor for the detection of polycyclic aromatic hydrocarbons in water and biological samples,” Sensors and Actuators B, vol. 111-112, pp. 323–330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Tombelli, M. Mascini, C. Sacco, and A. P. F. Turner, “A DNA piezoelectric biosensor assay coupled with a polymerase chain reaction for bacterial toxicity determination in environmental samples,” Analytica Chimica Acta, vol. 418, no. 1, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Roopa, N. Kumar, S. Bhattacharya, and G. V. Shivashankar, “Dynamics of membrane nanotubulation and DNA self-assembly,” Biophysical Journal, vol. 87, no. 2, pp. 974–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. H. Ng and L. L. Ilag, “Biomedical applications of protein chips,” Journal of Cellular and Molecular Medicine, vol. 6, no. 3, pp. 329–340, 2002. View at Google Scholar
  55. S. L. Beaucage, “Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications,” Current Medicinal Chemistry, vol. 8, no. 10, pp. 1213–1244, 2001. View at Google Scholar · View at Scopus
  56. J. Wang, “Nanomaterial-based electrochemical biosensors,” The Analyst, vol. 130, no. 4, pp. 421–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Q. Brown and M. J. McShane, “Modeling of spherical fluorescent glucose microsensor systems: design of enzymatic smart tattoos,” Biosensors and Bioelectronics, vol. 21, no. 9, pp. 1760–1769, 2006. View at Publisher · View at Google Scholar
  58. A. Wolter, P. Rannou, J. P. Travers, B. Gilles, and D. Djurado, “Model for aging in HCl-protonated polyaniline: structure, conductivity, and composition studies,” Physical Review B, vol. 58, no. 12, pp. 7637–7647, 1998. View at Google Scholar · View at Scopus
  59. M. S. Rahmanifar, M. F. Mousavi, M. Shamsipur, and S. Riahi, “A study on the influence of anionic surfactants on electrochemical degradation of polyaniline,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 3463–3468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Chandrakanthi and M. A. Careem, “Thermal stability of polyaniline,” Polymer Bulletin, vol. 44, no. 1, pp. 101–108, 2000. View at Google Scholar · View at Scopus
  61. T. A. Sergeyeva, N. V. Lavrik, S. A. Piletsky, A. E. Rachkov, and A. V. El'skaya, “Polyaniline label-based conductometric sensor for IgG detection,” Sensors and Actuators B, vol. 34, no. 1–3, pp. 283–288, 1996. View at Google Scholar · View at Scopus
  62. Y. C. Luo and J. S. Do, “Urea biosensor based on PANi(urease)-Nafion/Au composite electrode,” Biosensors and Bioelectronics, vol. 20, no. 1, pp. 15–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Iribe and M. Suzuki, Proceedings of the Seventh World Congress on Biosensors, Elsevier, Osaka, Japan, 2002.
  64. H. Ding, M. Wan, and Y. Wei, “Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential,” Advanced Materials, vol. 19, no. 3, pp. 465–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. E. S. Forzani, H. Zhang, L. A. Nagahara, I. Amlani, R. Tsui, and N. Tao, “A conducting polymer nanojunction sensor for glucose detection,” Nano Letters, vol. 4, no. 9, pp. 1785–1788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Sreedhar, P. Radhika, B. Neelima, N. Hebalkar, and M. V. B. Rao, “Synthesis and characterization of polyaniline: nanospheres, nanorods, and nanotubes-catalytic application for sulfoxidation reactions,” Polymers for Advanced Technologies, vol. 20, no. 12, pp. 950–958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. N. G. R. Mathebe, A. Morrin, and E. I. Iwuoha, “Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor,” Talanta, vol. 64, no. 1, pp. 115–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Michira, R. Akinyeye, V. Somerset et al., “Synthesis, characterisation of novel polyaniline nanomaterials and application in amperometric biosensors,” Macromolecular Symposia, vol. 255, pp. 57–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Wang, S. Li, and J. Kan, “A hydrogen peroxide biosensor based on polyaniline/FTO,” Sensors and Actuators B, vol. 137, no. 2, pp. 662–668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. E. I. Iwuoha, D. S. De Villaverde, N. P. Garcia, M. R. Smyth, and J. M. Pingarron, “Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film,” Biosensors and Bioelectronics, vol. 12, no. 8, pp. 749–761, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Kathleen, A. J. Killard, C. J. Hanson, A. A. Cafolla, and M. R. Smyth, “Optimisation and characterisation of biosensors based on polyaniline,” Talanta, vol. 68, no. 5, pp. 1591–1600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. E. G. Lyons, C. H. Lyons, C. Fitzgerald, and T. Bannon, “Poly(pyrrole) based amperometric sensors: theory and characterization,” The Analyst, vol. 4, no. 118, pp. 361–369, 1993. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Mu and H. Xue, “Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film,” Sensors and Actuators B, vol. 31, no. 3, pp. 155–160, 1996. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Morrin, O. Ngamna, A. J. Killard, S. E. Moulton, M. R. Smyth, and G. G. Wallace, “An amperometric enzyme biosensor fabricated from polyailine nanoparticles,” Electroanalysis, vol. 17, no. 5-6, pp. 423–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, “Application of nanoparticles in electrochemical sensors and biosensors,” Electroanalysis, vol. 18, no. 4, pp. 319–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Wang, S. Liu, P. Wu, and C. Cai, “Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes,” Analytical Chemistry, vol. 81, no. 4, pp. 1638–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Xu, Y. Zhu, L. Tang, X. Yang, and C. Li, “Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection,” Journal of Applied Polymer Science, vol. 109, no. 3, pp. 1802–1807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang, and L. Jin, “Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite,” Biosensors and Bioelectronics, vol. 21, no. 10, pp. 1996–2000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Zhou, H. Chen, S. Luo, J. Chen, W. Wei, and Y. Kuang, “Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline,” Biosensors and Bioelectronics, vol. 20, no. 7, pp. 1305–1311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Ramanathan, M. K. Ram, B. D. Malhotra, and A. S. N. Murthy, “Application of polyaniline-Langmuir-Blodgett films as a glucose biosensor,” Materials Science and Engineering C, vol. 3, no. 3-4, pp. 159–163, 1995. View at Google Scholar · View at Scopus
  81. L. R. Nemzer, A. Schwartz, and A. J. Epstein, “Enzyme entrapment in reprecipitated polyaniline nano- and microparticles,” Macromolecules, vol. 43, no. 9, pp. 4324–4330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. D. D. Borole, U. R. Kapadi, P. P. Mahulikar, and D. G. Hundiwale, “Glucose oxidase electrodes of poly(o-anisidine), poly(o-toluidine), and their copolymer as biosensors: a comparative study,” Journal of Applied Polymer Science, vol. 94, no. 5, pp. 1877–1884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Xue, Z. Shen, and C. Li, “Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film,” Biosensors and Bioelectronics, vol. 20, no. 11, pp. 2330–2334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Shi, Y. Xiao, and I. Willner, “Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces,” Electrochemistry Communications, vol. 6, no. 10, pp. 1057–1060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Zhao, X. Wu, and C. Cai, “Polyaniline nanofibers: synthesis, characterization, and application to direct electron transfer of glucose oxidase,” Journal of Physical Chemistry C, vol. 113, no. 12, pp. 4987–4996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Sukeerthi and A. Q. Contractor, “A study of polyaniline microtubules: toward superior transducing abilities,” Chemistry of Materials, vol. 10, no. 9, pp. 2412–2418, 1998. View at Google Scholar · View at Scopus
  87. A. Q. Contractor, R. S. Srinivasa, S. Kumar, R. Narayanan, S. Sukeerthi, and R. Lal, “Conducting polymer-based biosensors,” Electrochimica Acta, vol. 39, no. 8-9, pp. 1321–1324, 1994. View at Google Scholar · View at Scopus
  88. H. Sangodkar, S. Sukeerthi, R. Lal, R. S. Srinivasa, and A. Q. Contractor, “A biosensor array based on polyaniline,” Analytical Chemistry, vol. 68, no. 5, pp. 779–783, 1996. View at Google Scholar · View at Scopus
  89. A. A. Karyakin, M. Vuki, L. V. Lukachova et al., “Processible polyaniline as an advanced potentiometric pH transducer: application to biosensors,” Analytical Chemistry, vol. 71, no. 13, pp. 2534–2540, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. P. D. Gaikwad, D. J. Shirale, V. K. Gade et al., “Immobilization of GOD on electrochemically synthesized PANI film by cross-linking via glutaraldehyde for determination of glucose,” International Journal of Electrochemical Science, vol. 1, pp. 425–434, 2006. View at Google Scholar
  91. H. Wang and S. Mu, “Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film,” Sensors and Actuators B, vol. 56, no. 1, pp. 22–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Bayramoǧlu, M. Karakısla, B. Altıntasla, A. U. Metin, M. Saçak, and M. Y. Arıca, “Polyaniline grafted polyacylonitrile conductive composite fibers for reversible immobilization of enzymes: stability and catalytic properties of invertase,” Process Biochemistry, vol. 44, no. 8, pp. 880–885, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. D. Kim and S. Jeon, “Amperometric superoxide microbiosensor based on polyaniline-superoxide dismutase modified electrode,” Analytical Sciences, vol. 17, pp. a97–a99, 2001. View at Google Scholar
  94. D. Shan, Q. Shi, D. Zhu, and H. Xue, “Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline-polyacrylonitrile composite matrix,” Talanta, vol. 72, no. 5, pp. 1767–1772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Castelletti, S. A. Piletsky, A. P. F. Turner, P. G. Righetti, and A. Bossi, “Development of an integrated capillary electrophoresis/sensor for L-ascorbic acid detection,” Electrophoresis, vol. 23, no. 2, pp. 209–214, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. J. J. Langer, M. Filipiak, J. Kȩcińska, J. Jasnowska, J. Włodarczak, and B. Buładowski, “Polyaniline biosensor for choline determination,” Surface Science, vol. 573, no. 1, pp. 140–145, 2004. View at Publisher · View at Google Scholar
  97. P. N. Bartlett, P. R. Birkin, and E. N. K. Wallace, “Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes,” Journal of the Chemical Society—Faraday Transactions, vol. 93, no. 10, pp. 1951–1960, 1997. View at Google Scholar · View at Scopus
  98. F. Tian, B. Xu, L. Zhu, and G. Zhu, “Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode,” Analytica Chimica Acta, vol. 443, no. 1, pp. 9–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Yadav, R. Devi, S. Kumari, S. Yadav, and C. S. Pundir, “An amperometric oxalate biosensor based on sorghum oxalate oxidase bound carboxylated multiwalled carbon nanotubes-polyaniline composite film,” Journal of Biotechnology, vol. 151, no. 2, pp. 212–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Tang, J. Zheng, Q. Sheng, H. Zhang, and R. Liu, “A novel H2O2 sensor based on the enzymatically induced deposition of polyaniline at a horseradish peroxide/aligned single-wall carbon nanotubes modified Au electrode,” The Analyst, vol. 136, no. 4, pp. 781–786, 2011. View at Publisher · View at Google Scholar
  101. D. Chen, C. Chen, and D. Du, “Detection of organophosphate pesticide using polyaniline and carbon nanotubes composite based on acetylcholinesterase inhibition,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 9, pp. 5662–5666, 2010. View at Publisher · View at Google Scholar
  102. P. Vatsyayan, S. Bordoloi, and P. Goswami, “Large catalase based bioelectrode for biosensor application,” Biophysical Chemistry, vol. 153, no. 1, pp. 36–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Rajesh, A. K. Kanugula, K. Bhargava, G. Ilavazhagan, S. Kotamraju, and C. Karunakaran, “Simultaneous electrochemical determination of superoxide anion radical and nitrite using Cu, ZnSOD immobilized on carbon nanotube in polypyrrole matrix,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 689–695, 2010. View at Publisher · View at Google Scholar
  104. C. Deng, J. Chen, Z. Nie, and S. Si, “A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode,” Biosensors and Bioelectronics, vol. 26, no. 1, pp. 213–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. D. Du, X. Ye, J. Cai, J. Liu, and A. Zhang, “Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates,” Biosensors and Bioelectronics, vol. 25, no. 11, pp. 2503–2508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. M. Uang and T. C. Chou, “Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions,” Biosensors and Bioelectronics, vol. 19, no. 3, pp. 141–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. D. D. Borole, U. R. Kapadi, P. P. Mahulikar, and D. G. Hundiwale, “Glucose oxidase electrodes of polyaniline, poly(o-toluidine) and their copolymer as a biosensor: a comparative study,” Polymers for Advanced Technologies, vol. 15, no. 6, pp. 306–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Seker and I. Becerik, “A neural network model in the calibration of glucose sensor based on the immobilization of glucose oxidase into polypyrrole matrix,” Electroanalysis, vol. 16, no. 18, pp. 1542–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Ramanavicius, A. Kausaite, A. Ramanaviciene, J. Acaite, and A. Malinauskas, “Redox enzyme-glucose oxidase-initiated synthesis of polypyrrole,” Synthetic Metals, vol. 156, no. 5-6, pp. 409–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Pan, J. Chen, S. Yao, W. Tao, and L. Nie, “An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode,” Analytical Sciences, vol. 21, no. 4, pp. 367–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Curulli, F. Valentini, S. Orlanduci, M. L. Terranova, and G. Palleschi, “Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures,” Biosensors and Bioelectronics, vol. 20, no. 6, pp. 1223–1232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Callegavi, S. Cosnier, M. Marcaccio et al., “Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors,” Journal of Materials Chemistry, vol. 14, no. 5, pp. 807–810, 2004. View at Google Scholar
  113. M. Trojanowicz and A. Miernik, “Bilayer lipid membrane glucose biosensors with improved stability and sensitivity,” Electrochimica Acta, vol. 46, no. 7, pp. 1053–1061, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Myler, F. Davis, S. D. Collyer, and S. P. J. Higson, “Sonochemically fabricated microelectrode arrays for biosensors—part II: modification with a polysiloxane coating,” Biosensors and Bioelectronics, vol. 20, no. 2, pp. 408–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. F. He, Y. Tang, M. Yu, S. Wang, Y. Li, and D. Zhu, “Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing,” Advanced Functional Materials, vol. 16, no. 1, pp. 91–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Arslan, S. Kiralp, L. Toppare, and Y. Yagci, “Immobilization of tyrosinase in polysiloxane/polypyrrole copolymer matrices,” International Journal of Biological Macromolecules, vol. 35, no. 3-4, pp. 163–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Védrine, S. Fabiano, and C. Tran-Minh, “Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support,” Talanta, vol. 59, no. 3, pp. 535–544, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. A. E. Böyükbayram, S. Kiralp, L. Toppare, and Y. Yaǧci, “Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine,” Bioelectrochemistry, vol. 69, no. 2, pp. 164–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Jiang, H. K. Jun, Y. S. Hoh, J. O. Lim, D. D. Lee, and J. S. Huh, “Sensing characteristics of polypyrrole-poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization,” Sensors and Actuators B, vol. 105, no. 2, pp. 132–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. M. A. Rahman, D. S. Park, and Y. B. Shim, “A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer,” Biosensors and Bioelectronics, vol. 19, no. 12, pp. 1565–1571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Kan, X. Pan, and C. Chen, “Polyaniline-uricase biosensor prepared with template process,” Biosensors and Bioelectronics, vol. 19, no. 12, pp. 1635–1640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Haccoun, B. Piro, V. Noël, and M. C. Pham, “The development of a reagentless lactate biosensor based on a novel conducting polymer,” Bioelectrochemistry, vol. 68, no. 2, pp. 218–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. P. N. Bartlett, E. Simon, and C. S. Toh, “Modified electrodes for NADH oxidation and dehydrogenase-based biosensors,” Bioelectrochemistry, vol. 56, no. 1-2, pp. 117–122, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. P. Asberg and O. Inganas, “Biomolecular and organic electronics,” Biosensors and Bioelectronic, vol. 19, pp. 199–207, 2003. View at Google Scholar
  125. K. Grennan, A. J. Killard, and M. R. Smyth, “Chemically polymerized polyaniline films for the mass-production of biosensor devices,” Electroanalysis, vol. 17, no. 15-16, pp. 1360–1369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, and S. Dong, “A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network,” Analytical Chemistry, vol. 74, no. 9, pp. 2217–2223, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. O. Ngamna, A. Morrin, S. E. Moulton, A. J. Killard, M. R. Smyth, and G. G. Wallace, “An HRP based biosensor using sulphonated polyaniline,” Synthetic Metals, vol. 153, no. 1–3, pp. 185–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. B. Zhou, R. Sun, X. Hu et al., “Facile interfacial electron transfer of hemoglobin mediated by conjugated polymers,” International Journal of Molecular Sciences, vol. 6, no. 12, pp. 303–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Lindgren, T. Ruzgas, L. Gorton et al., “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer,” Biosensors and Bioelectronics, vol. 15, no. 9-10, pp. 491–497, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. Z. Dai, S. Liu, and H. Ju, “Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing,” Electrochimica Acta, vol. 49, no. 13, pp. 2139–2144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” Biosensors and Bioelectronics, vol. 17, no. 1-2, pp. 53–59, 2002. View at Publisher · View at Google Scholar
  132. D. G. Bijanowska, M. Dawgul, and W. Torbicz, “Comparison of urea determination in biological samples by enfets based on pH and pNH4 detection,” Sensors, vol. 3, no. 6, pp. 160–165, 2003. View at Google Scholar
  133. A. Zhang, Y. Hou, N. Jaffrezic-Renault, J. Wan, A. Soldatkin, and J. M. Chovelon, “Mixed urease/amphiphile LB films and their application for biosensor development,” Bioelectrochemistry, vol. 56, no. 1-2, pp. 157–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. A. V. Rebriiev and N. F. Starodub, “Enzymatic biosensor based on the ISFET and photopolymeric membrane for the determination of urea,” Electroanalysis, vol. 16, no. 22, pp. 1891–1895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. M. R. Pinto and K. S. Schanze, “Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 20, pp. 7505–7510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. A. N. Ivanov, G. A. Evtugyn, L. V. Lukachova et al., “New poly aniline-based potentiometric biosensor for pesticides detection,” IEEE Sensors Journal, vol. 3, no. 3, pp. 333–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. M. A. Rahman, D. S. Park, S. C. Chang, C. J. McNeil, and Y.-B. Shim, “The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1116–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. F. Qu, M. Yang, J. Jiang, G. Shen, and R. Yu, “Amperometric biosensor for chorine based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film,” Analytical Biochemistry, vol. 344, no. 1, pp. 108–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. O. A. Biloivan, S. V. Verevka, S. V. Dzyadevych et al., “Protein detection based on microelectrodes with the PPy[3,3-Co(1,2-C2B9H11)]2 solid contact and immobilized proteinases: preliminary investigations,” Materials Science and Engineering C, vol. 26, no. 2-3, pp. 574–577, 2006. View at Publisher · View at Google Scholar
  140. D. Lee and T. Cui, “Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing,” Biosensors and Bioelectronics, vol. 25, no. 10, pp. 2259–2264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. Tan, W. Deng, Y. Li et al., “Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications,” Journal of Physical Chemistry B, vol. 114, no. 15, pp. 5016–5024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Xiao, X. Chu, B. Wu, H. Pang, X. Zhang, and J. Chen, “Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein,” Talanta, vol. 80, no. 5, pp. 1719–1724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Haddad, S. Cosnier, A. Maaref, and M. Holzinger, “Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization,” The Analyst, vol. 134, no. 12, pp. 2412–2418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Xie, X. Feng, J. Hu, X. Chen, and A. Li, “Al3+-directed self-assembly and their electrochemistry properties of three-dimensional dendriform horseradish peroxidase/polyacrylamide/platinum/single-walled carbon nanotube composite film,” Biosensors and Bioelectronics, vol. 25, no. 5, pp. 1186–1192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. K. Min and Y. J. Yoo, “Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode,” Talanta, vol. 80, no. 2, pp. 1007–1011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Bhambi, G. Sumana, B. D. Malhotra, and C. S. Pundir, “An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film,” Artificial Cells, Blood Substitutes, and Biotechnology, vol. 38, no. 4, pp. 178–185, 2010. View at Publisher · View at Google Scholar
  147. A. Barik, P. R. Solanki, A. Kaushik et al., “Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 10, pp. 6479–6488, 2010. View at Publisher · View at Google Scholar
  148. C. Dhand, P. R. Solanki, M. K. Pandey, M. Datta, and B. D. Malhotra, “Electrophoretically deposited polyaniline nanotubes based film for cholesterol detection,” Electrophoresis, vol. 31, no. 22, pp. 3754–3762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. C. Dhand, M. Das, G. Sumana et al., “Preparation, characterization and application of polyaniline nanospheres to biosensing,” Nanoscale, vol. 2, no. 5, pp. 747–754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. A. A. Ansari, G. Sumana, R. Khan, and B. D. Malhotra, “Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 8, pp. 4679–4685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. C. Dhand, S. K. Arya, M. Datta, and B. D. Malhotra, “Polyaniline-carbon nanotube composite film for cholesterol biosensor,” Analytical Biochemistry, vol. 383, no. 2, pp. 194–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. P. Pandey, S. P. Singh, S. K. Arya, A. Sharma, M. Datta, and B. D. Malhotra, “Gold nanoparticle-polyaniline composite films for glucose sensing,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 6, pp. 3158–3163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. Z. Matharu, G. Sumana, S. K. Arya, S. P. Singh, V. Gupta, and B. D. Malhotra, “Polyaniline langmuir-blodgett film based cholesterol biosensor,” Langmuir, vol. 23, no. 26, pp. 13188–13192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  154. C. Dhand, S. P. Singh, S. K. Arya, M. Datta, and B. D. Malhotra, “Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension,” Analytica Chimica Acta, vol. 602, no. 2, pp. 244–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Singh, P. R. Solanki, M. K. Pandey, and B. D. Malhotra, “Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor,” Analytica Chimica Acta, vol. 568, no. 1-2, pp. 126–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. K. Arora, G. Sumana, V. Saxena et al., “Improved performance of polyaniline-uricase biosensor,” Analytica Chimica Acta, vol. 594, no. 1, pp. 17–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, and A. Kumar, “Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene),” Biosensors and Bioelectronics, vol. 20, no. 3, pp. 651–657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, and A. Kumar, “Biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood,” Biotechnology Letters, vol. 26, no. 8, pp. 645–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Singhal, A. Chaubey, K. Kaneto, W. Takashima, and B. D. Malhotra, “Poly-3-Hexyl Thiophene Langmuir-Blodgett Films for Application to Glucose Biosensor,” Biotechnology and Bioengineering, vol. 85, no. 3, pp. 277–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Chaubey, K. K. Pande, and B. D. Malhotra, “Application of polyaniline/sol-gel derived tetraethylorthosilicate films to an amperometric lactate biosensor,” Analytical Sciences, vol. 19, no. 11, pp. 1477–1480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. S. K. Arya, P. R. Solanki, R. P. Singh, M. K. Pandey, M. Datta, and B. D. Malhotra, “Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique,” Talanta, vol. 69, no. 4, pp. 918–926, 2006. View at Publisher · View at Google Scholar · View at Scopus