Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2012, Article ID 715763, 12 pages
http://dx.doi.org/10.1155/2012/715763
Review Article

Electronic Nose for Microbiological Quality Control of Food Products

1CNR-IDASC SENSOR Laboratory and University of Brescia, Via Valotti 9, 25133 Brescia, Italy
2Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
3Department of Agricultural and Food Sciences, Modena and Reggio Emilia University, Via Amendola 2, 42100 Reggio Emilia, Italy

Received 7 September 2011; Revised 1 December 2011; Accepted 1 December 2011

Academic Editor: Miloslav Pravda

Copyright © 2012 M. Falasconi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Saxby, Food Taints and Off-flavours, Blackie Academic & Professional, Cambridge, UK, 1st edition, 1993.
  2. L. M. Reid, C. P. O'Donnell, and G. Downey, “Recent technological advances for the determination of food authenticity,” Trends in Food Science and Technology, vol. 17, no. 7, pp. 344–353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Arora, S. Chand, and B. D. Malhotra, “Recent developments in bio-molecular electronics techniques for food pathogens,” Analytica Chimica Acta, vol. 568, no. 1-2, pp. 259–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Pardo and G. Sberveglieri, “Electronic olfactory systems based on metal oxide semiconductor sensor arrays,” MRS Bulletin, vol. 29, no. 10, pp. 703–701, 2004. View at Google Scholar · View at Scopus
  5. T. C. Pearce, S. S. Shiffman, H. T. Nagle, and J. W. Gardner, Handbook of Machine Olfaction, Wiley-VHC, Weinheim, Germany, 2003.
  6. E. Schaller, J. O. Bosset, and F. Escher, ““Electronic noses” and their application to food,” Food Science and Technology, vol. 31, no. 4, pp. 305–316, 1998. View at Google Scholar · View at Scopus
  7. M. Ghasemi-Varnamkhasti, S. S. Mohtasebi, and M. Siadat, “Biomimetic-based odor and taste sensing systems to food quality and safety characterization: an overview on basic principles and recent achievements,” Journal of Food Engineering, vol. 100, no. 3, pp. 377–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Berna, “Metal oxide sensors for electronic noses and their application to food analysis,” Sensors, vol. 10, no. 4, pp. 3882–3910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Wilson and M. Baietto, “Applications and advances in electronic-nose technologies,” Sensors, vol. 9, no. 7, pp. 5099–5148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Peris and L. Escuder-Gilabert, “A 21st century technique for food control: electronic noses,” Analytica Chimica Acta, vol. 638, no. 1, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Sahgal, R. Needham, F. J. Cabañes, and N. Magan, “Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: a review,” Food Additives and Contaminants, vol. 24, no. 10, pp. 1161–1168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Magan and P. Evans, “Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage,” Journal of Stored Products Research, vol. 36, no. 4, pp. 319–340, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Cagnasso, M. Falasconi, M. P. Previdi et al., “Rapid screening of alicyclobacillus acidoterrestris spoilage of fruit juices by electronic nose: a confirmation study,” Journal of Sensors, vol. 2010, Article ID 143173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Labreche, S. Bazzo, S. Cade, and E. Chanie, “Shelf life determination by electronic nose: application to milk,” Sensors and Actuators B, vol. 106, no. 1, pp. 199–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Falasconi, E. Gobbi, M. Pardo, M. Della Torre, A. Bresciani, and G. Sberveglieri, “Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system,” Sensors and Actuators B, vol. 108, no. 1-2, pp. 250–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Olsson, T. Börjesson, T. Lundstedt, and J. Schnürer, “Volatiles for mycological quality grading of barley grains: determinations using gas chromatography-mass spectrometry and electronic nose,” International Journal of Food Microbiology, vol. 59, no. 3, pp. 167–178, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Paolesse, A. Alimelli, E. Martinelli et al., “Detection of fungal contamination of cereal grain samples by an electronic nose,” Sensors and Actuators B, vol. 119, no. 2, pp. 425–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Evans, K. C. Persaud, A. S. McNeish, R. W. Sneath, N. Hobson, and N. Magan, “Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data,” Sensors and Actuators B, vol. 69, no. 3, pp. 348–358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Cheli, A. Campagnoli, L. Pinotti, G. Savoini, and V. Dell'Orto, “Electronic nose for determination of aflatoxins in maize,” Biotechnology, Agronomy and Society and Environment, vol. 13, pp. 39–43, 2009. View at Google Scholar
  20. E. Gobbi, M. Falasconi, E. Torelli, and G. Sberveglieri, “Electronic nose predicts high and low fumonisin contamination in maize cultures,” Food Research International, vol. 44, pp. 992–999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Falasconi, Development and validation of an Electronic Olfactory System for the food industry, Ph.D. thesis, University of Brescia, Italy, 2004.
  22. S. Marín, M. Vinaixa, J. Brezmes et al., “Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products,” International Journal of Food Microbiology, vol. 114, no. 1, pp. 10–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Needham, J. Williams, N. Beales, P. Voysey, and N. Magan, “Early detection and differentiation of spoilage of bakery products,” Sensors and Actuators B, vol. 106, no. 1, pp. 20–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Panigrahi, S. Balasubramanian, H. Gu, C. Logue, and M. Marchello, “Neural-network-integrated electronic nose system for identification of spoiled beef,” Food Science and Technology, vol. 39, no. 2, pp. 135–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Balasubramanian, S. Panigrahi, C. M. Logue, C. Doetkott, M. Marchello, and J. S. Sherwood, “Independent component analysis-processed electronic nose data for predicting Salmonella typhimurium populations in contaminated beef,” Food Control, vol. 19, no. 3, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. N. El Barbri, E. Llobet, N. El Bari, X. Correig, and B. Bouchikhi, “Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat,” Sensors, vol. 8, no. 1, pp. 142–156, 2008. View at Google Scholar · View at Scopus
  27. D. Wang, X. Wang, T. Liu, and Y. Liu, “Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine,” Meat Science, vol. 90, no. 2, pp. 373–377, 2012. View at Publisher · View at Google Scholar
  28. G. Olafsdottir, E. Chanie, F. Westad et al., “Prediction of microbial and sensory quality of cold smoked Atlantic salmon (Solmo salar) by electronic nose,” Journal of Food Science, vol. 70, no. 9, pp. S563–S574, 2005. View at Google Scholar · View at Scopus
  29. W. X. Du, C. M. Lin, T. Huang, J. Kim, M. Marshall, and C. I. Wei, “Potential application of the electronic nose for quality assessment of salmon fillets under various storage conditions,” Journal of Food Science, vol. 67, no. 1, pp. 307–313, 2002. View at Google Scholar · View at Scopus
  30. J. Chantarachoti, A. C. M. Oliveira, B. H. Himelbloom, C. A. Crapo, and D. G. McLachlan, “Portable electronic nose for detection of spoiling alaska pink salmon (Oncorhynchus gorbuscha),” Journal of Food Science, vol. 71, no. 5, pp. S414–S421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. N. E. Barbri, J. Mirhisse, R. Ionescu et al., “An electronic nose system based on a micro-machined gas sensor array to assess the freshness of sardines,” Sensors and Actuators B, vol. 141, no. 2, pp. 538–543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Benedetti, S. Iametti, F. Bonomi, and S. Mannino, “Head space sensor array for the detection of aflatoxin M1 in raw ewe's milk,” Journal of Food Protection, vol. 68, no. 5, pp. 1089–1092, 2005. View at Google Scholar · View at Scopus
  33. C. Li, N. E. Schmidt, and R. Gitaitis, “Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS,” Food Science and Technology, vol. 44, no. 4, pp. 1019–1025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Concina, M. Falasconi, E. Gobbi et al., “Early detection of microbial contamination in processed tomatoes by electronic nose,” Food Control, vol. 20, no. 10, pp. 873–880, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Gobbi, M. Falasconi, I. Concina et al., “Electronic nose and Alicyclobacillus spp. spoilage of fruit juices: an emerging diagnostic tool,” Food Control, vol. 21, no. 10, pp. 1374–1382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Concina, M. Bornšek, S. Baccelliere, M. Falasconi, E. Gobbi, and G. Sberveglieri, “Alicyclobacillus spp.: detection in soft drinks by Electronic Nose,” Food Research International, vol. 43, no. 8, pp. 2108–2114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Z. Berna, S. Trowell, W. Cynkar, and D. Cozzolino, “Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage,” Journal of Agricultural and Food Chemistry, vol. 56, no. 9, pp. 3238–3244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Balasubramanian, S. Panigrahi, B. Kottapalli, and C. E. Wolf-Hall, “Evaluation of an artificial olfactory system for grain quality discrimination,” Food Science and Technology, vol. 40, no. 10, pp. 1815–1825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Olsson, T. Börjesson, T. Lundstedt, and J. Schnürer, “Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose,” International Journal of Food Microbiology, vol. 72, no. 3, pp. 203–214, 2002. View at Publisher · View at Google Scholar
  40. A. Jonsson, F. Winquist, J. Schnurer, H. Sundgren, and I. Lundstrom, “Electronic nose for microbial quality classification of grains,” International Journal of Food Microbiology, vol. 35, no. 2, pp. 187–193, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Haugen, K. Rudi, S. Langsrud, and S. Bredholt, “Application of gas-sensor array technology for detection and monitoring of growth of spoilage bacteria in milk: a model study,” Analytica Chimica Acta, vol. 565, no. 1, pp. 10–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Magan, A. Pavlou, and I. Chrysanthakis, “Milk-sense:a volatile sensing system recognizes spoilage bacteria and yeasts in milk,” Sensors and Actuators B, vol. 72, no. 1, pp. 28–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Röck, N. Barsan, and U. Weimar, “Electronic nose: current status and future trends,” Chemical Reviews, vol. 108, no. 2, pp. 705–725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De Jong, P. J. Lewi, and J. Smeyers-Verbeke, “Principal components,” in Handbook of Chemometrics and Qualimetrics, Part A, chapter 17, Elsevier, Amsterdam, The Netherlands, 1997. View at Google Scholar
  45. M. Pardo and G. Sberveglieri, “Classification of electronic nose data with support vector machines,” Sensors and Actuators B, vol. 107, no. 2, pp. 730–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De Jong, P. J. Lewi, and J. Smeyers-Verbeke, “Quantitative structure activity relationships (QSARs),” in Handbook of Chemometrics and Qualimetrics, Part B, chapter 37, Elsevier, Amsterdam, The Netherlands, 1997. View at Google Scholar
  47. M. Walker and C. A. Phillips, “Alicyclobacillus acidoterrestris: an increasing threat to the fruit juice industry?” International Journal of Food Science and Technology, vol. 43, no. 2, pp. 250–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. S. Chang and D. H. Kang, “Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures,” Critical Reviews in Microbiology, vol. 30, no. 2, pp. 55–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Jensen and F. B. Whitfield, “Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice,” Letters in Applied Microbiology, vol. 36, no. 1, pp. 9–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Z. Berna, J. Lammertryn, S. Saevels, C. Di Natale, and B. M. Nicolaï, “Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile,” Sensors and Actuators B, vol. 97, no. 2-3, pp. 324–333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Maul, S. A. Sargent, M. O. Balaban, E. A. Baldwin, D. J. Huber, and C. A. Sims, “Aroma volatile profiles from ripe tomatoes are influenced by physiological maturity at harvest: an application for electronic nose technology,” Journal of the American Society for Horticultural Science, vol. 123, no. 6, pp. 1094–1101, 1998. View at Google Scholar · View at Scopus
  52. H. J. Zeringue, D. Bhatnagar, and T. E. Cleveland, “C15H24 volatile compounds unique to aflatoxigenic strains of Aspergillus flavus,” Applied and Environmental Microbiology, vol. 59, no. 7, pp. 2264–2270, 1993. View at Google Scholar
  53. H. H. Jelen, C. J. Mirocha, E. Wasowicz, and E. Kaminski, “Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes,” Applied and Environmental Microbiology, vol. 61, no. 11, pp. 3815–3820, 1995. View at Google Scholar · View at Scopus
  54. D. Hodgins and D. Simmonds, “Sensory technology for flavor analysis,” Cereal Foods World, vol. 40, pp. 186–191, 1995. View at Google Scholar
  55. G. Keshri and N. Magan, “Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile mycotoxigenic strains of two production profiles and hydrolytic enzymes,” Journal of Applied Microbiology, vol. 89, no. 5, pp. 825–833, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. R. A. Etzel, “Mycotoxins,” Journal of the American Medical Association, vol. 287, no. 4, pp. 425–427, 2002. View at Google Scholar · View at Scopus
  57. M. Nakajima, H. Tsubouchi, M. Miyabe, and Y. Ueno, “Survey of aflatoxin B1 and ochratoxin a in commercial green coffee beans by high-performance liquid chromatography linked with immunoaffinity chromatography,” Food and Agricultural Immunology, vol. 9, no. 2, pp. 77–83, 1997. View at Google Scholar
  58. K. Karlshøj, P. V. Nielsen, and T. O. Larsen, “Differentiation of closely related fungi by electronic nose analysis,” Journal of Food Science, vol. 72, no. 6, pp. M187–M192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Comini, G. Faglia, and G. Sberveglieri, Solid State Gas Sensing, Springer, New York, NY, USA, 2008.
  60. M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, and S. Marco, “Drift compensation of gas sensor array data by Orthogonal Signal Correction,” Chemometrics and Intelligent Laboratory Systems, vol. 100, no. 1, pp. 28–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Di Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, and A. Tonda, “Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation,” Pattern Recognition Letters, vol. 32, no. 13, pp. 1594–1603, 2011. View at Publisher · View at Google Scholar
  62. O. Tomic, T. Eklöv, K. Kvaal, and J. E. Haugen, “Recalibration of a gas-sensor array system related to sensor replacement,” Analytica Chimica Acta, vol. 512, no. 2, pp. 199–206, 2004. View at Publisher · View at Google Scholar · View at Scopus