Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2013, Article ID 257926, 7 pages
http://dx.doi.org/10.1155/2013/257926
Research Article

Electrochemical Behavior of Ni(II)-Salen at the Mercury Electrode

Department of Chemistry, Pontifícia Universidade Católica, Rua Marques de São Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil

Received 4 February 2013; Revised 26 March 2013; Accepted 1 April 2013

Academic Editor: Angela Molina

Copyright © 2013 Pércio Augusto Mardini Farias and Margarida Bethlem Rodrigues Bastos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Mandal, N. V. Kumar, U. Varshney, and S. Bhattacharya, “Metal-ion-dependent oxidative DNA cleavage by transition metal complexes of a new water-soluble salen derivative,” vol. 63, no. 4, pp. 265–272, 1996. View at Google Scholar
  2. V. A. Soloshonok and T. Ono, “The effect of substituents on the feasibility of azomethine-azomethine isomerization: new synthetic opportunities for biomimetic transamination,” Tetrahedron, vol. 52, no. 47, pp. 14701–14712, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Hassan, “Chemical interactions between tetracyanoethylene and s-methyldithiocarbazate as well as azomethine derivatives,” Phosphorus Sulfur and Silicon and the Related Elements, vol. 101, no. 1–4, pp. 189–196, 1995. View at Google Scholar
  4. G. A. Shagisultanova, I. A. Orlova, and Y. F. Batrakov, “Photosensitive polymers based on bis(salicylidene)ethylenediamine complexes of copper(II) and palladium(II),” The Russian Journal of Applied Chemistry, vol. 68, no. 4, pp. 567–569, 1995. View at Google Scholar
  5. K. Bhat, K. J. Chang, M. D. Aggarwal, W. S. Wang, B. G. Penn, and D. O. Frazier, “Synthesis and characterization of various schiff bases for non-linear optical applications,” Materials Chemistry and Physics, vol. 44, no. 3, pp. 261–266, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. R. I. Kureshy, N. H. Khan, S. H. R. Abdi, and A. K. Bhatt, “Asymmetric catalytic epoxidation of styrene by dissymmetric Mn(III) and Ru(III) chiral Schiff base complexes synthesis and physicochemical studies,” Journal of Molecular Catalysis A, vol. 110, no. 1, pp. 33–40, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. G. L. Estiú, A. H. Jubert, J. Costamagna, and J. Vargas, “UV-visible spectroscopy in the interpretation of the tautomeric equilibrium of N,N′(bis-3,5-di-bromo-salicyliden)-1,2-diaminobenzene and the redox activity of its Co(II) complex. A quantum chemical approach,” Journal of Molecular Structure, vol. 367, no. 1–3, pp. 97–110, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Ischay, M. S. Mubarak, and D. G. Peters, “Catalytic reduction and intramolecular cyclization of haloalkynes in the presence of nickel(I) salen electrogenerated at carbon cathodes in dimethylformamide,” Journal of Organic Chemistry, vol. 71, no. 2, pp. 623–628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Dunach, A. P. Esteves, M. J. Medeiros, D. Pletcher, and S. Olivero, “The study of nickel(II) and cobalt(II) complexes with a chiral salen derivative as catalysts for the electrochemical cyclisation of unsaturated 2-bromophenyl ethers,” Journal of Electroanalytical Chemistry, vol. 566, no. 1, pp. 39–45, 2004. View at Google Scholar
  10. K. Nakanishi and R. Crouch, “Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins,” Israel Journal of Chemistry, vol. 35, no. 3-4, pp. 253–272, 1995. View at Google Scholar
  11. J. A. Tenon, M. Carles, and J. P. Aycard, “N-Méthyl succinimide,” Acta Crystallographica Section C, vol. 56, no. 5, pp. 568–569, 2000. View at Google Scholar · View at Scopus
  12. S. H. Alarcón, A. C. Olivieri, A. Nordon, and R. K. Harris, “Solid-state electronic absorption, fluorescence and13C CPMAS NMR spectroscopic study of thermo- and photo-chromic aromatic Schiff bases,” Journal of the Chemical Society, vol. 2, no. 11, pp. 2293–2296, 1996. View at Google Scholar · View at Scopus
  13. S. Samal, R. R. Das, D. Sahoo, S. Acharya, R. L. Panda, and R. C. Rout, “Chelating resins. III. Synthesis, characterization, and capacity studies of formaldehyde-condensed phenolic Schiff bases derived from 1,2-diamines and hydroxy benzaldehydes,” Journal of Applied Polymer Science, vol. 62, no. 9, pp. 1437–1444, 1996. View at Google Scholar · View at Scopus
  14. T. K. Hwang, J. N. Miller, D. T. Burns, and J. W. Bridges, “Determination of primary amines by means of fluorescent schiff base derivatives,” Analytica Chimica Acta, vol. 99, no. 2, pp. 305–315, 1978. View at Google Scholar · View at Scopus
  15. J. Hayashi, M. Yamada, and T. Hobo, “Chemiluminescence flow-injection method for the determination of amino acids based on Schiff base formation in sodium(2-ethylhexyl)sulphosuccinate reversed micelles,” Analytica Chimica Acta, vol. 259, pp. 67–72, 1992. View at Google Scholar
  16. S. Abe, J. Mochizuki, and T. Sone, “Liquid-liquid extraction of iron(III) and gallium(III) with macrocyclic Schiff bases containing bisphenol A subunits,” Analytica Chimica Acta, vol. 319, no. 3, pp. 387–392, 1996. View at Google Scholar
  17. A. K. Jain, V. K. Gupta, P. A. Ganeshpure, and J. R. Raisoni, “Ni(II)-selective ion sensors of salen type Schiff base chelates,” Analytica Chimica Acta, vol. 553, no. 1-2, pp. 177–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. S. Mandal, U. Varshney, and S. Bhattacharya, “Role of the central metal ion and ligand charge in the DNA binding and modification by metallosalen complexes,” Bioconjugate Chemistry, vol. 8, no. 6, pp. 798–812, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sakamoto, Y. Nishida, A. Matsumoto et al., “Nickel(II)-lanthanide(III) complexes of the dinucleating ligand N,N'-bis(3-hydroxysalicylidene)ethylenediamine,” Journal of Coordination Chemistry, vol. 38, pp. 347–354, 1996. View at Google Scholar
  20. J. R. Morrow and K. A. Kolasa, “Cleavage of DNA by nickel complexes,” Inorganica Chimica Acta, vol. 195, no. 2, pp. 245–248, 1992. View at Google Scholar · View at Scopus
  21. J. G. Muller, S. J. Paikoff, S. E. Rokita, and C. J. Burrows, “DNA modification promoted by water-soluble nickel (II) salen complexes: a switch to DNA alkylation,” Journal of Inorganic Biochemistry, vol. 54, no. 3, pp. 199–206, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Muller, S. J. Paikoff, S. E. Rokita, and C. J. T. Burrows, “Ligand-centered oxidation of nickel salen complexes in reaction with DNA,” Abstracts of Papers of the American Chemical Society, vol. 208, p. 266, 1994. View at Google Scholar
  23. J. G. Muller, L. A. Kayser, S. J. Paikoff et al., “Formation of DNA adducts using nickel(II) complexes of redox-active ligands: a comparison of salen and peptide complexes,” Coordination Chemistry Reviews, vol. 185-186, pp. 761–774, 1999. View at Google Scholar · View at Scopus
  24. S. Routier, H. Vezin, E. Lamour, J. L. Bernier, J. P. Catteau, and C. Bailly, “DNA cleavage by hydroxy-salicylidene-ethylendiamine-iron complexes,” Nucleic Acids Research, vol. 27, no. 21, pp. 4160–4166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. Cheng and Y. L. Lu, “Novel water-soluble 4,4-disubstituted ruthenium(iii)-salen complexes in dna stranded scission,” Journal of the Chinese Chemical Society, vol. 45, pp. 611–617, 1998. View at Google Scholar
  26. T. Tanaka, K. Tsurutani, A. Komatsu et al., “Synthesis of new cationic schiff base complexes of copper(II) and their selective binding with DNA,” Bulletin of the Chemical Society of Japan, vol. 70, no. 3, pp. 615–629, 1997. View at Google Scholar · View at Scopus
  27. A. Sigel and H. Sigel, Eds., Metal Ions in Biological Systems, vol. 32, 33, Dekker, New York, NY, USA, 1996.
  28. J. Tedim, S. Patrício, R. Bessada et al., “Third-order nonlinear optical properties of DA-salen-type nickel(II) and copper(II) complexes,” European Journal of Inorganic Chemistry, no. 17, pp. 3425–3433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Reed, A. A. Arnal, S. Neidle, and R. Vilar, “Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes,” Journal of the American Chemical Society, vol. 128, pp. 5992–5993, 2006. View at Google Scholar
  30. A. A. Isse, A. Gennaro, and E. Vianello, “A study of the electrochemical reduction mechanism of Ni(salophen) in DMF,” Electrochimica Acta, vol. 37, no. 1, pp. 113–118, 1992. View at Google Scholar · View at Scopus
  31. I. C. Santos, M. Vilas-Boas, M. F. M. Piedade, C. Freire, M. T. Duarte, and B. de Castro, “Electrochemical and X-ray studies of nickel(II) Schiff base complexes derived from salicylaldehyde. Structural effects of bridge substituents on the stabilisation of the +3 oxidation state,” Polyhedron, vol. 19, no. 6, pp. 655–664, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Vanalabhpatana and D. G. Peters, “Catalytic reduction of 1,6-dihalohexanes by nickel(I) salen electrogenerated at glassy carbon cathodes in dimethylformamide,” Journal of the Electrochemical Society, vol. 152, no. 7, pp. E222–E229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Correia, A. Dornyei, T. Jakusch, F. Avecilla, T. Kiss, and J. C. Pessoa, “Water-soluble sal2en- and reduced sal2en-type ligands: study of their CuII and NiII complexes in the solid state and in solution,” The European Journal of Inorganic Chemistry, no. 14, pp. 2819–2830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Buriez, L. M. Moretto, and P. Ugo, “Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: reactivity of the electrogenerated low-valent complexes,” Electrochimica Acta, vol. 52, no. 3, pp. 958–964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Vanalabhpatana and D. G. Peters, “Stoichiometric reduction of secondary alkyl monohalides by electrogenerated nickel(I) salen in the presence of oxygen and water: prospects for the formation of ketones,” Journal of Electroanalytical Chemistry, vol. 593, pp. 34–42, 2006. View at Google Scholar
  36. Y. Abe, H. Akao, Y. Yoshida et al., “Syntheses, structures, and mesomorphism of a series of Ni(II) salen complexes with 4-substituted long alkoxy chains,” Inorganica Chimica Acta, vol. 359, no. 10, pp. 3147–3155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Feng, Z. X. Du, B. X. Ye, and F. N. Cui, “Synthesis, Crystal Structure and Electrochemistry Properties of a (N,N'-Ethylene-bis(salicylaldiminato)) Nickel(II) Complex, [Ni2(salen)2]·NCS·NH4,” Chinese Journal of Structural Chemistry, vol. 26, no. 9, pp. 1033–1038, 2007. View at Google Scholar
  38. M. B. R. Bastos, “Contribution to the study electroanalytical of salen schiff bases and pyridoxal-5′-phosphate and some of its complexes with Cu2+, Co2+, Ni2+ and UO22+,” [Ph.D. thesis], Pontifical Catholic University of Rio de Janeiro, Brazil, 1997. View at Google Scholar
  39. P. A. M. Farias and M. B. R. Bastos, “Electrochemical behavior of copper(II) salen in aqueous phosphate buffer at the mercury electrode,” International Journal of Electrochemical Science, vol. 4, no. 3, pp. 458–470, 2009. View at Google Scholar · View at Scopus
  40. M. B. R. Bastos, J. C. Moreira, and P. A. M. Farias, “Adsorptive stripping voltammetric behaviour of UO2(II) complexed with the Schiff base N,N′- ethylenebis(salicylidenimine) in aqueous 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid medium,” Analytica Chimica Acta, vol. 408, no. 1, pp. 83–88, 2000. View at Google Scholar
  41. R. Greef, Instrumental Methods in Electrochemistry, Ellis Horwood, Chichester, England, 1985.
  42. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, NY, USA, 1980.
  43. A. A. Barros, J. A. Rodrigues, P. J. Almeida, P. G. Rodrigues, and A. G. Fogg, “Voltammetry of compounds confined at the hanging mercury drop electrode surface,” Analytica Chimica Acta, vol. 385, no. 1–3, pp. 315–323, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Cueillić, M. Mlakar, and M. Branica, “Influence of the HEPES Buffer on Electrochemical Reaction of the Copper(II)-Salicylaldoxime Complex,” Electroanalysis, vol. 10, no. 12, pp. 852–856, 1998. View at Google Scholar · View at Scopus
  45. M. Lovric, S. Komorsky-Lovric, and R. W. Murray, “Adsorption effects in square-wave voltammetry of totally irreversible redox reactions,” Electrochimica Acta, vol. 33, no. 6, pp. 739–744, 1988. View at Google Scholar
  46. R. Djogic and M. Branica, “Square-wave cathodic stripping voltammetry of hydrolyzed uranyl species,” Analytica Chimica Acta, vol. 305, no. 1–3, pp. 159–164, 1995. View at Google Scholar
  47. S. Komorsky-Lovric and M. Lovric, “Kinetic measurements of a surface confined redox reaction,” Analytica Chimica Acta, vol. 305, no. 1–3, pp. 248–255, 1995. View at Google Scholar
  48. M. Lovric and S. Komorsky-Lovric, “Square-wave voltammetry of an adsorbed reactant,” Journal of Electroanalytical Chemistry, vol. 248, no. 2, pp. 239–253, 1988. View at Google Scholar · View at Scopus
  49. B. K. Sweeny and D. G. Peters, “Cyclic voltammetric study of the catalytic behavior of nickel(I) salen electrogenerated at a glassy carbon electrode in an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM+BF4−),” Electrochemistry Communications, vol. 3, no. 12, pp. 712–715, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Azevedo, C. Freire, and B. de Castro, “Reductive electrochemical study of Ni(II) complexes with N2O2 schiff base complexes and spectroscopic characterisation of the reduced species. Reactivity towards CO,” Polyhedron, vol. 21, no. 17, pp. 1695–1705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. F. S. Teixeira and T. R. L. Dadamos, “An electrochemical sensor for dipyrone determination based on nickel-salen film modified electrode,” in Proceedings of the Eurosensors XXIII Conference, J. Brugger and D. Briand, Eds., vol. 1 of Procedia Chemistry, 2009. View at Google Scholar
  52. J. L. Li, F. Gao, Y. K. Zhang, and X. D. Wang, “Electrochemical polymerization of nano-micro sheaf/wire conducting polymer poly[Ni(SALEN)] for electrochemical energy storage system,” Chinese Journal of Polymer Science, vol. 28, no. 5, pp. 667–671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. S. Martin, T. R. L. Dadamos, and M. F. S. Teixeira, “Development of an electrochemical sensor for determination of dissolved oxygen by nickel-salen polymeric film modified electrode,” Sensors and Actuators B, vol. 175, pp. 111–117, 2012. View at Google Scholar