Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2013, Article ID 970835, 7 pages
http://dx.doi.org/10.1155/2013/970835
Research Article

Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

1Deptartment of Chemical Engineering, College of Technological Studies, P.O. Box 42325, 70654 Shuwaikh, Kuwait
2Deptartment of Mechanical Production Technology, College of Technological Studies, P.O. Box 42325, 70654 Shuwaikh, Kuwait

Received 28 March 2013; Accepted 22 April 2013

Academic Editor: Sheng S. Zhang

Copyright © 2013 A. Almubarak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Chandler, Marine and Offshore Corrosion, Butterworth, London, UK, 1985.
  2. G. E. Moller, “The successful use of austenitic stainless steel in sea water,” Society of Petroleum Engineers Journal, vol. 4, pp. 35–45, 1977. View at Google Scholar
  3. L. Zheng, A. Neville, A. Gledhill, and D. Johnston, “Investigation into the corrosion behavior of stainless steel 316L in hydraulic fluids for subsea applications,” in Proceedings of the NACE Corrosion Conference (Corrosion ’08), no. 08236, Houston, Tex, USA, 2008.
  4. A. Kopliku and C. Mendez, “316 Stainless steel instrument tubing in marine applications-localized corrosion problems and solutions,” in Proceedings of the NACE Corrosion Conference (Corrosion ’10), no. 10305, Houston, Tex, USA, 2010.
  5. Welding Research Council and WRC Bulletin, “Intergranular corrosion of chromium-nickel stainless steels,” Tech. Rep. 138, New York, NY, USA, 1969. View at Google Scholar
  6. P. R. Rhodes, “Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: a review,” Corrosion, vol. 57, no. 11, pp. 923–966, 2001. View at Google Scholar · View at Scopus
  7. M. Kikuchi and Y. Mishima, “High nitrogen steels,” in Proceedings of the Conference on High Nitrogen Steels (HNS ’95), Kioto, Japan, 1996.
  8. M. O. Speidel, “Properties and applications of high nitrogen steels,” in Proceedings of the Conference on High Nitrogen Steels (HNS ’88), Lille, France, 1989.
  9. V. Gavriljuk and V. Nadutov, “High nitrogen steels,” in Proceedings of the Conference on High Nitrogen Steels (HNS ’93), Kiev, Ukraine, 1993.
  10. R. Ritzenhoff and A. Hahn, “Corrosion resistance of high nitrogen steels,” in Corrosion Resistance, H. Shih, Ed., chapter 3, InTech, Shanghai, China, 2012. View at Google Scholar
  11. N. Baykal, J. Reggia, N. Yalabik, A. Erkmen, and M. Beksac, “The influence of nitrogen on the passivation of stainless steels,” Corrosion Science, vol. 38, no. 7, pp. 1203–1220, 1996. View at Google Scholar
  12. H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, “Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties,” Journal of Materials Processing Technology, vol. 117, no. 3, pp. 424–430, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Tervo, J. Romu, E. Hamalainen, H. Hanninen, and J. Liimatainen, “Properties of P/M high nitrogen austenitic and duplex stainless steels,” in Proceedings of the 5th International Conference on Advanced Particulate Materials and Processes, pp. 317–329, West Palm Beach, Fla, USA, 1977.
  14. H. Katak and B. Raj, Corrosion of Austenitic Stainless Steels-Mechanism, Mitigation and Monitoring, Narosa Publishing House, New Delhi, India, 2002.
  15. W. Clarke, W. Romero, and I. Danko, “Detection of sensitization in stainless steel using electrochemical techniques,” in Proceedings of NACE Corrosion Conference (Corrosion ’77), no. 180, Houston, Tex, USA, 1977.
  16. P. Novák, P. Štefec, and R. Franz, “Testing the susceptibility of stainless steels to intergranular corrosion by reactivation method,” Corrosion, vol. 31, pp. 344–347, 1975. View at Google Scholar
  17. A. P. Majidi and M. A. Streicher, “Potentiodynamic reactivation method for detecting densitization in AlSl 304 and 304L stainless steels,” Corrosion, vol. 40, no. 8, pp. 393–408, 1984. View at Google Scholar · View at Scopus
  18. V. Kain, R. C. Prasad, and P. K. De, “Testing sensitization and predicting susceptibility to intergranular corrosion and intergranular stress corrosion cracking in austenitic stainless steels,” Corrosion, vol. 58, no. 1, pp. 15–37, 2002. View at Google Scholar · View at Scopus
  19. J. W. Simmons, “Overview: high-nitrogen alloying stainless steels,” Material Science & Engineering, vol. 207, pp. 159–169, 1996. View at Google Scholar
  20. R. F. A. Jargelius-Pettersson, “Application of the pitting resistance equivalent concept to some highly alloyed austenitic stainless steels,” Corrosion, vol. 54, no. 2, pp. 162–168, 1998. View at Google Scholar · View at Scopus
  21. A. Almubarak, M. Belkharchouche, and A. Hussain, “Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries,” Anti-Corrosion Methods and Materials, vol. 57, no. 2, pp. 58–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Pozuelo, J. E. Wittig, J. A. Jiménez, and G. Frommeyer, “Enhanced mechanical properties of a novel high-nitrogen Cr-Mn-Ni-Si austenitic stainless steel via TWIP/TRIP effects,” Metallurgical and Materials Transactions A, vol. 40, no. 8, pp. 1826–1834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. W. Ross, “New technology stainless steels and nickel alloys for marine applications in the year 2000 and beyond,” in Proceedings of Oceans 2000 MTS/IEEE Conference and Exhibition, vol. 3, pp. 1597–1505, Piscataway, NJ, USA, 2000.