Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2014, Article ID 186109, 8 pages
http://dx.doi.org/10.1155/2014/186109
Research Article

Action of Chicory Fructooligosaccharides on Biomimetic Membranes

1Biochemistry Laboratory, Federal University of Alfenas, R. Gabriel Monteiro da Silva, 700 Centro, 37130-000 Alfenas, MG, Brazil
2Materials Group Lab, Chemistry Institute, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
3Integrative Animal Biology Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil

Received 23 May 2014; Revised 17 October 2014; Accepted 19 October 2014; Published 16 November 2014

Academic Editor: Shen-Ming Chen

Copyright © 2014 A. F. Barbosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” Journal of Nutrition, vol. 125, no. 6, pp. 1401–1412, 1995. View at Google Scholar · View at Scopus
  2. M. B. Roberfroid, “Chicory fructooligosaccharides and the gastrointestinal tract,” Nutrition, vol. 16, no. 7-8, pp. 677–679, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Biedrzycka and M. Bielecka, “Prebiotic effectiveness of fructans of different degrees of polymerization,” Trends in Food Science & Technology, vol. 15, no. 3-4, pp. 170–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Fukasawa, A. Kamei, Y. Watanabe, J. Koga, and K. Abe, “Short-chain fructooligosaccharide regulates hepatic peroxisome proliferator-activated receptor α and farnesoid X receptor target gene expression in Rats,” Journal of Agricultural and Food Chemistry, vol. 58, no. 11, pp. 7007–7012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. R. J. Bornet, F. Brouns, Y. Tashiro, and V. Duvillier, “Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications,” Digestive and Liver Disease, vol. 34, supplement 2, pp. S111–S120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Nzeusseu, D. Dienst, V. Haufroid, G. Depresseux, J.-P. Devogelaer, and D.-H. Manicourt, “Inulin and fructo-oligosaccharides differ in their ability to enhance the density of cancellous and cortical bone in the axial and peripheral skeleton of growing rats,” Bone, vol. 38, no. 3, pp. 394–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. van den Ende, D. Peshev, and L. de Gara, “Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract,” Trends in Food Science and Technology, vol. 22, no. 12, pp. 689–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Matsukawa, M. Matsumoto, A. Shinoki, M. Hagio, R. Inoue, and H. Hara, “Nondigestible saccharides suppress the bacterial degradation of quercetin aglycone in the large intestine and enhance the bioavailability of quercetin glucoside in rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 20, pp. 9462–9468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Laparra and Y. Sanz, “Interactions of gut microbiota with functional food components and nutraceuticals,” Pharmacological Research, vol. 61, no. 3, pp. 219–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Suzuki and H. Hara, “Various nondigestible saccharides open a paracellular calcium transport pathway with the induction of intracellular calcium signaling in human intestinal Caco-2 cells,” The Journal of Nutrition, vol. 134, no. 8, pp. 1935–1941, 2004. View at Google Scholar · View at Scopus
  11. T. Fukasawa, K. Murashima, T. Nemoto et al., “Identification of marker genes for lipid-lowering effect of a short-chain fructooligosaccharide by DNA microarray analysis,” Journal of Dietary Supplements, vol. 6, no. 3, pp. 254–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Huang, Z. Zhang, X. Han et al., “Concentration-dependent behavior of nisin interaction with supported bilayer lipid membrane,” Biophysical Chemistry, vol. 99, no. 3, pp. 271–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Ma, J. Wang, F. Hui, and S. Zang, “The reassembled behavior of bilayer lipid membranes supported by Pt electrode,” Journal of Membrane Science, vol. 286, no. 1-2, pp. 174–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Lu, T. Liao, L. Ding et al., “Interaction of quercetin with supported bilayer lipid membranes on glassy carbon electrode,” International Journal of Electrochemical Science, vol. 3, no. 7, pp. 797–805, 2008. View at Google Scholar · View at Scopus
  15. D. Jiang, P. Diao, R. Tong, D. Gu, and B. Zhong, “Ca2+ induced FeCN63-/4- electron transfer at Pt supported BLM electrode,” Bioelectrochemistry and Bioenergetics, vol. 44, no. 2, pp. 285–288, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Basu and M. Basu, Liposome Methods and Protocols, Methods in Molecular Biology, Humana Press, New York, NY, USA, 2002.
  17. H. Y. Wang, Y. Sun, and B. Tang, “Study on fluorescence property of dopamine and determination of dopamine by fluorimetry,” Talanta, vol. 57, no. 5, pp. 899–907, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statisti cal Computing, Vienna, Austria, 2012.
  19. J. J. Harris and M. L. Bruening, “Electrochemical and in situ ellipsometric investigation of the permeability and stability of layered polyelectrolyte films,” Langmuir, vol. 16, no. 4, pp. 2006–2013, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Diao, D. Jiang, X. Cui, D. Gu, R. Tong, and B. Zhong, “Cyclic voltammetry and a.c. impedance studies of Ca2+-induced ion channels on Pt-BLM,” Bioelectrochemistry and Bioenergetics, vol. 45, no. 2, pp. 173–179, 1998. View at Google Scholar
  21. D. Pan, J. Chen, W. Tao, L. Nie, and S. Yao, “Phosphopolyoxomolybdate absorbed on lipid membranes/carbon nanotube electrode,” Journal of Electroanalytical Chemistry, vol. 579, no. 1, pp. 77–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Wilke and A. M. Baruzzi, “Comparative analysis of the charge transfer processes of the Ru(NH3)63+/Ru(NH3)62+ and Fe(CN)63−/Fe(CN)64− redox couples on glassy carbon electrodes modified by different lipid layers,” Journal of Electroanalytical Chemistry, vol. 537, no. 1-2, pp. 67–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wang, L. Wang, S. Liu, X. Han, W. Huang, and E. Wang, “Interaction of K7Fe3+P2W17O62H2 with supported bilayer lipid membranes on platinum electrode,” Biophysical Chemistry, vol. 106, no. 1, pp. 31–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Liu, W. Huang, and E. Wang, “An electrochemical study on the interaction of surfactin with a supported bilayer lipid membrane on a glassy carbon electrode,” Journal of Electroanalytical Chemistry, vol. 577, no. 2, pp. 349–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Du, X. Liu, W. Huang, and E. Wang, “A study on the interaction between ibuprofen and bilayer lipid membrane,” Electrochimica Acta, vol. 51, no. 26, pp. 5754–5760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wang, B. Zeng, C. Fang, and X. Zhou, “Influence of surfactants on the electron-transfer reaction at self-assembled thiol monolayers modifying a gold electrode,” Journal of Electroanalytical Chemistry, vol. 484, no. 1, pp. 88–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J.-S. Ye, A. Ottova, H. T. Tien, and F.-S. Sheu, “Nanostructured platinum-lipid bilayer composite as biosensor,” Bioelectrochemistry, vol. 59, no. 1-2, pp. 65–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Favero, A. D'Annibale, L. Campanella, R. Santucci, and T. Ferri, “Membrane supported bilayer lipid membranes array: preparation, stability and ion-channel insertion,” Analytica Chimica Acta, vol. 460, no. 1, pp. 23–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Asaka, H. Ti Tien, and A. Ottova, “Voltammetric study of charge transfer across supported bilayer lipid membranes (s-BLMs),” Journal of Biochemical and Biophysical Methods, vol. 40, no. 1-2, pp. 27–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Kochev and M. Karabaliev, “Wetting films of lipids in the development of sensitive interfaces. An electrochemical approach,” Advances in Colloid and Interface Science, vol. 107, no. 1, pp. 9–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. C. G. Zoski, Handbook of Electrochemistry, vol. 5, Elsevier, New York, NY, USA, 2007.
  32. H. Haas, G. Lamura, and A. Gliozzi, “Improvement of the quality of self assembled bilayer lipid membranes by using a negative potential,” Bioelectrochemistry, vol. 54, no. 1, pp. 1–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Amatore, J. M. Savéant, and D. Tessier, “Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites,” Journal of Electroanalytical Chemistry, vol. 147, no. 1-2, pp. 39–51, 1983. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Yang, Q. Wan, and X. Wang, “Voltammetry of Vitamin B12 on a thin self-assembled monolayer modified electrode,” Electrochimica Acta, vol. 50, no. 11, pp. 2175–2180, 2005. View at Publisher · View at Google Scholar
  35. H. Sato, H. Hakamada, Y. Yamazaki, M. Uto, M. Sugawara, and Y. Umezawa, “Ionophore incorporated bilayer lipid membranes that selectively respond to metal ions and induce membrane permeability changes,” Biosensors and Bioelectronics, vol. 13, no. 9, pp. 1035–1046, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Huang, Z. Zhang, X. Han et al., “Ion channel behavior of Amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy,” Biophysical Journal, vol. 83, no. 6, pp. 3245–3255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Schreier, S. V. P. Malheiros, and E. de Paula, “Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects,” Biochimica et Biophysica Acta: Biomembranes, vol. 1508, no. 1-2, pp. 210–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Liu, H. Bai, W. Huang, L. Du, X. Yang, and E. Wang, “Concentration and time dependant behavior of chlorpromazine interaction with supported bilayer lipid membrane,” Electrochimica Acta, vol. 51, no. 12, pp. 2512–2517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Oren and Y. Shai, “Mode of action of linear amphipathic α-helical antimicrobial peptides,” Biopolymers, vol. 47, no. 6, pp. 451–463, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Crowe, J. H. Crowe, and D. Chapman, “Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine,” Archives of Biochemistry and Biophysics, vol. 236, no. 1, pp. 289–296, 1985. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Grdadolnik and D. Hadži, “FT infrared and Raman investigation of saccharide-phosphatidylcholine interactions using novel structure probes,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 54, no. 12, pp. 1989–2000, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Paasonen, T. Laaksonen, C. Johans, M. Yliperttula, K. Kontturi, and A. Urtti, “Gold nanoparticles enable selective light-induced contents release from liposomes,” Journal of Controlled Release, vol. 122, no. 1, pp. 86–93, 2007. View at Publisher · View at Google Scholar · View at Scopus