Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2014, Article ID 383892, 8 pages
http://dx.doi.org/10.1155/2014/383892
Research Article

Synthesis and Characterization of Electrodeposited C-PANI-Pd-Ni Composite Electrocatalyst for Methanol Oxidation

1Department of Chemistry, Birla Institute of Technology (Mesra), Ranchi, Jharkhand 835215, India
2Department of Chemistry, Government Engineering College, Ramgarh, Jharkhand 829122, India
3Department of Chemical & Polymer Engineering, Birla Institute of Technology (Mesra), Ranchi, Jharkhand 835215, India

Received 7 August 2014; Revised 30 September 2014; Accepted 30 September 2014; Published 16 October 2014

Academic Editor: Hamilton Varela

Copyright © 2014 S. S. Mahapatra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Li and A. Faghri, “Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions,” Journal of Power Sources, vol. 226, pp. 223–240, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Kitani, T. Akashi, K. Sugimoto, and S. Ito, “Electrocatalytic oxidation of methanol on platinum modified polyaniline electrodes,” Synthetic Metals, vol. 121, no. 1–3, pp. 1301–1302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Alcaide, G. Álvarez, P. L. Cabot, H.-J. Grande, O. Miguel, and A. Querejeta, “Testing of carbon supported Pd-Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells,” International Journal of Hydrogen Energy, vol. 36, no. 7, pp. 4432–4439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Miao, B. Tao, L. Sun et al., “Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells,” Journal of Power Sources, vol. 195, no. 1, pp. 146–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Qi, H. Geng, X. Wang et al., “Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media,” Journal of Power Sources, vol. 196, no. 14, pp. 5823–5828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, and M. G. Mahjani, “Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode,” International Journal of Hydrogen Energy, vol. 33, no. 16, pp. 4367–4376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. S. Kumar, P. Haridoss, and S. K. Seshadri, “Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation,” Surface and Coatings Technology, vol. 202, no. 9, pp. 1764–1770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zhao, X. Yang, J. Tian, F. Wang, and L. Zhan, “Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media,” International Journal of Hydrogen Energy, vol. 35, no. 8, pp. 3249–3257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sharma and B. G. Pollet, “Support materials for PEMFC and DMFC electrocatalysts—a review,” Journal of Power Sources, vol. 208, pp. 96–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Wu, L. Li, J.-H. Li, and B.-Q. Xu, “Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation,” Carbon, vol. 43, no. 12, pp. 2579–2587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Gao, J.-B. He, Y. Wang, and N. Deng, “Advantageous combination of solid carbon paste and a conducting polymer film as a support of platinum electrocatalyst for methanol fuel cell,” Journal of Power Sources, vol. 205, pp. 164–172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Ćirić-Marjanovic, “Recent advances in polyaniline composites with metals, metalloids and nonmetals,” Synthetic Metals, vol. 170, no. 1, pp. 31–56, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. F.-J. Liu, L.-M. Huang, T.-C. Wen, and A. Gopalan, “Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation,” Synthetic Metals, vol. 157, no. 16-17, pp. 651–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Zhiani, B. Rezaei, and J. Jalili, “Methanol electro-oxidation on Pt/C modified by polyaniline nanofibers for DMFC applications,” International Journal of Hydrogen Energy, vol. 35, no. 17, pp. 9298–9305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Habibi and M. H. Pournaghi-Azar, “Methanol oxidation on the polymer coated and polymer-stabilized Pt nano-particles: a comparative study of permeability and catalyst particle distribution ability of the PANI and its derivatives,” International Journal of Hydrogen Energy, vol. 35, no. 17, pp. 9318–9328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Baba, S. Tian, F. Stefani et al., “Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance,” Journal of Electroanalytical Chemistry, vol. 562, no. 1, pp. 95–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. R. Prasad and N. Munichandraiah, “Electrooxidation of methanol on polyaniline without dispersed catalyst particles,” Journal of Power Sources, vol. 103, no. 2, pp. 300–304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Wang, Z.-Z. Zhu, J. Shi, and H.-L. Li, “Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film,” Applied Surface Science, vol. 253, no. 22, pp. 8811–8817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Cohen, D. J. Volpe, and H. D. Abruña, “Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes,” Physical Chemistry Chemical Physics, vol. 9, no. 1, pp. 49–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. S. Mahapatra, A. Dutta, and J. Datta, “Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium,” Electrochimica Acta, vol. 55, no. 28, pp. 9097–9104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. W. He, J. Liu, Y. Qiao et al., “Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction,” Journal of Power Sources, vol. 195, no. 4, pp. 1046–1050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. S. Mahapatra, A. Dutta, and J. Datta, “Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium,” International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 14873–14883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Wang, G. Gao, H. Zhu, Z. Sun, H. Liu, and X. Zhao, “Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol,” International Journal of Hydrogen Energy, vol. 34, no. 23, pp. 9334–9340, 2009. View at Publisher · View at Google Scholar · View at Scopus