Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2016, Article ID 2935035, 10 pages
http://dx.doi.org/10.1155/2016/2935035
Research Article

Dealloying Behavior of NiCo and NiCoCu Thin Films

Department of Physics, Hope College, Holland, MI 49423, USA

Received 29 July 2016; Accepted 22 September 2016

Academic Editor: Jiehua Liu

Copyright © 2016 Benjamin E. Peecher and Jennifer R. Hampton. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. T. Bryce, A. S. Stephen III, and E. P. Luther, “Nanoporous metal foams,” Angewandte Chemie—International Edition, vol. 49, no. 27, pp. 4544–4565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature, vol. 410, no. 6827, pp. 450–453, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Erlebacher, “An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. C614–C626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Ding and J. Erlebacher, “Nanoporous metals with controlled multimodal pore size distribution,” Journal of the American Chemical Society, vol. 125, no. 26, pp. 7772–7773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Brunelli, M. Dabalà, R. Frattini, and M. Magrini, “Structural characterization and electrocatalytic properties of Au30Zr70 amorphous alloy obtained by rapid quenching,” Journal of Applied Electrochemistry, vol. 33, no. 11, pp. 995–1000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Jia, C. Yu, K. Deng, and L. Zhang, “Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance,” Journal of Physical Chemistry C, vol. 111, no. 24, pp. 8424–8431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chemistry of Materials, vol. 19, no. 15, pp. 3648–3653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Jaron and Z. Żurek, “New porous iron electrode for hydrogen evolution—production and properties,” Archives of Metallurgy and Materials, vol. 53, no. 3, pp. 847–853, 2008. View at Google Scholar · View at Scopus
  9. J. Snyder, K. Livi, and J. Erlebacher, “Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides,” Journal of the Electrochemical Society, vol. 155, no. 8, pp. C464–C473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L.-Y. Chen, J.-S. Yu, T. Fujita, and M.-W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Advanced Functional Materials, vol. 19, no. 8, pp. 1221–1226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hakamada, M. Takahashi, T. Furukawa, and M. Mabuchi, “Coercivity of nanoporous Ni produced by dealloying,” Applied Physics Letters, vol. 94, no. 15, Article ID 153105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Wang, Z. Qi, C. Zhao, W. Wang, and Z. Zhang, “Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al−Ag alloys,” The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13139–13150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Antoniou, D. Bhattacharrya, J. K. Baldwin et al., “Controlled nanoporous Pt morphologies by varying deposition parameters,” Applied Physics Letters, vol. 95, no. 7, Article ID 073116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sattayasamitsathit, P. Thavarungkul, C. Thammakhet et al., “Fabrication of nanoporous copper film for electrochemical detection of glucose,” Electroanalysis, vol. 21, no. 21, pp. 2371–2377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Hakamada, H. Nakano, T. Furukawa, M. Takahashi, and M. Mabuchi, “Hydrogen storage properties of nanoporous palladium fabricated by dealloying,” Journal of Physical Chemistry C, vol. 114, no. 2, pp. 868–873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Zhang and Z. Zhang, “On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution,” Physical Chemistry Chemical Physics, vol. 12, no. 7, pp. 1453–1472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Sun, C.-L. Chien, and P. C. Searson, “Fabrication of nanoporous nickel by electrochemical dealloying,” Chemistry of Materials, vol. 16, no. 16, pp. 3125–3129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-K. Chang, S.-N. Hsu, I.-W. Sun, and W.-T. Tsai, “Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys,” Journal of Physical Chemistry C, vol. 112, no. 5, pp. 1371–1376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J.-K. Chang, S.-H. Hsu, W.-T. Tsai, and I.-W. Sun, “A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance,” Journal of Power Sources, vol. 177, no. 2, pp. 676–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M.-J. Deng, F.-L. Huang, I.-W. Sun, W.-T. Tsai, and J.-K. Chang, “An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity,” Nanotechnology, vol. 20, no. 17, Article ID 175602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-K. Chang, C.-M. Wu, and I.-W. Sun, “Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications,” Journal of Materials Chemistry, vol. 20, no. 18, pp. 3729–3735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D.-S. Kong, J.-M. Wang, H.-B. Shao, J.-Q. Zhang, and C.-N. Cao, “Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance,” Journal of Alloys and Compounds, vol. 509, no. 18, pp. 5611–5616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C.-M. Wu, C.-Y. Fan, I.-W. Sun, W.-T. Tsai, and J.-K. Chang, “Improved pseudocapacitive performance and cycle life of cobalt hydroxide on an electrochemically derived nano-porous Ni framework,” Journal of Power Sources, vol. 196, no. 18, pp. 7828–7834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M.-G. Jeong, K. Zhuo, S. Cherevko, and C.-H. Chung, “Formation of nanoporous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical dealloying,” Korean Journal of Chemical Engineering, vol. 29, no. 12, pp. 1802–1805, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Dai, D. Chen, H. Fan et al., “Ni(OH)2/NiO/Ni composite nanotube arrays for high-performance supercapacitors,” Electrochimica Acta, vol. 154, pp. 128–135, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. M.-J. Deng, C.-Z. Song, C.-C. Wang, Y.-C. Tseng, J.-M. Chen, and K.-T. Lu, “Low cost facile synthesis of large-area cobalt hydroxide nanorods with remarkable pseudocapacitance,” ACS Applied Materials and Interfaces, vol. 7, no. 17, pp. 9147–9156, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. T. G. Nikiforova, T. V. Savel'Eva, and O. A. Datskevich, “Catalytic activity of electrolytic palladium deposits on porous nickel substrates,” Russian Journal of Applied Chemistry, vol. 84, no. 8, pp. 1347–1353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. R. Koboski, E. F. Nelsen, and J. R. Hampton, “Hydrogen evolution reaction measurements of dealloyed porous NiCu,” Nanoscale Research Letters, vol. 8, no. 1, article 528, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Yin and F. Chen, “Electrochemically fabricated hierarchical porous Ni(OH)2/NiCu electrodes for hydrogen evolution reaction,” Electrochimica Acta, vol. 117, pp. 84–91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Liu, G. Xia, F. Zhu et al., “Exploiting finite size effects in a novel core/shell microstructure,” Journal of Applied Physics, vol. 103, no. 6, Article ID 064313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Snyder, P. Asanithi, A. B. Dalton, and J. Erlebacher, “Stabilized nanoporous metals by dealloying ternary alloy precursors,” Advanced Materials, vol. 20, no. 24, pp. 4883–4886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. C. Neyerlin, R. Srivastava, C. Yu, and P. Strasser, “Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR),” Journal of Power Sources, vol. 186, no. 2, pp. 261–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Xu, R. Wang, M. Chen, Y. Zhang, and Y. Ding, “Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties,” Physical Chemistry Chemical Physics, vol. 12, no. 1, pp. 239–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Xu, L. Wang, X. Mu, and Y. Ding, “Nanoporous PtRu alloys for electrocatalysis,” Langmuir, vol. 26, no. 10, pp. 7437–7443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Zhang, Y. Wang, and X. Wang, “Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid,” Nanoscale, vol. 3, no. 4, pp. 1663–1674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Wang, C. Xu, X. Bi, and Y. Ding, “Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts,” Energy and Environmental Science, vol. 5, no. 1, pp. 5281–5286, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Xu, Y. Liu, J. Wang, H. Geng, and H. Qiu, “Nanoporous PdCu alloy for formic acid electro-oxidation,” Journal of Power Sources, vol. 199, pp. 124–131, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Zhang, C. Zhang, Y. Gao, J. Frenzel, J. Sun, and G. Eggeler, “Dealloying strategy to fabricate ultrafine nanoporous gold-based alloys with high structural stability and tunable magnetic properties,” CrystEngComm, vol. 14, no. 23, pp. 8292–8300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Wang, Z. Wang, D. Zhao, and C. Xu, “Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose,” Analytica Chimica Acta, vol. 832, pp. 34–43, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. Q. Hao, D. Zhao, H. Duan, and C. Xu, “Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries,” ChemSusChem, vol. 8, no. 8, pp. 1435–1441, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. M. J. Gira, K. P. Tkacz, and J. R. Hampton, “Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films,” Nano Convergence, vol. 3, article 6, 2016. View at Publisher · View at Google Scholar
  42. N. R. Wozniak, A. A. Frey, L. W. Osterbur, T. S. Boman, and J. R. Hampton, “An electrochemical cell for the efficient turn around of wafer working electrodes,” Review of Scientific Instruments, vol. 81, no. 3, Article ID 034102, 2010. View at Publisher · View at Google Scholar · View at Scopus