Table of Contents Author Guidelines Submit a Manuscript
International Journal of Forestry Research
Volume 2013, Article ID 852540, 11 pages
http://dx.doi.org/10.1155/2013/852540
Review Article

Eucalyptus and Water Use in South Africa

1Department of Forestry and Environmental Resources, North Carolina State University, P.O. Box 8008, Raleigh, NC 27695-8008, USA
2School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

Received 15 June 2012; Accepted 5 February 2013

Academic Editor: John Stanturf

Copyright © 2013 Janine M. Albaugh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Stape, J. L. M. Gonçalves, and A. N. Gonçalves, “Relationships between nursery practices and field performance for Eucalyptus plantations in Brazil,” New Forests, vol. 22, pp. 19–41, 2001. View at Google Scholar
  2. D. Binkley and J. L. Stape, “Sustainable management of Eucalyptus plantations in a changing world,” in Proceedings of the IUFRO Conference of Eucalyptus in a Changing World, N. Borralho, J. S. Pereira, C. Marques, J. Coutinho, M. Madeira, and M. Tomé, Eds., pp. 11–17, Aveiro, Portugal, October 2004.
  3. P. J. Dye, “Estimating water use by Eucalyptus grandis with the Penman-Monteith equation,” in Proceedings of the Vancouver Symposium of Forest Hydrology and Watershed Management, R. H. Swanson, P. Y. Bernier, and P. D. Woodard, Eds., pp. 329–337, IAHS Publication, Oxfordshire, UK, August 1987.
  4. M. E. D. Poore and C. Fries, “The ecological effects of Eucalyptus,” FAO Forestry Paper 59, FAO, Rome, Italy, 1985. View at Google Scholar
  5. B. W. Olbrich, D. Le Roux, A. G. Poulter, W. J. Bond, and W. D. Stock, “Variation in water use efficiency and δ13C levels in Eucalyptus grandis clones,” Journal of Hydrology, vol. 150, no. 2–4, pp. 615–633, 1993. View at Google Scholar · View at Scopus
  6. J. Kallarackal and C. K. Somen, “An ecophysiological evaluation of the suitability of Eucalyptus grandis for planting in the tropics,” Forest Ecology and Management, vol. 95, no. 1, pp. 53–61, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. J. V. Soares and A. C. Almeida, “Modeling the water balance and soil water fluxes in a fast growing Eucalyptus plantation in Brazil,” Journal of Hydrology, vol. 253, no. 1–4, pp. 130–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. F. Scott, F. W. Prinsloo, G. Moses, M. Mehlomakulu, and A. D. A. Simmers, “A re-analysis of the South African catchment afforestation experimental data,” WRC Report 810/1/00, Water Research Commission, Pretoria, South Africa, 2000. View at Google Scholar
  9. M. Grut, Forestry and forest industry in South Africa, Balkema, Cape Town, South Africa, 1965.
  10. Forestry South Africa, South African Forestry Facts for the Year 2008/2009, Forestry South Africa, Pretoria, South Africa, 2010.
  11. The South African Forest Owners Association, Understanding our Forestry Heritage, Rainbird, Pretoria, South Africa, 1997.
  12. P. J. Dye and B. W. Olbrich, “Estimating transpiration from 6-year-old Eucalyptus grandis trees: development of a canopy conductance model and comparison with independent sap flux measurements,” Plant, Cell and Environment, vol. 16, pp. 45–53, 1993. View at Google Scholar
  13. D. F. Scott and W. Lesch, “Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa,” Journal of Hydrology, vol. 199, no. 3-4, pp. 360–377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Dye and D. Versfeld, “Managing the hydrological impacts of South African plantation forests: an overview,” Forest Ecology and Management, vol. 251, no. 1-2, pp. 121–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. J. Dye, “Climate, forest and streamflow relationships in South African afforested catchments,” Commonwealth Forestry Review, vol. 75, pp. 31–38, 1996. View at Google Scholar
  16. M. B. Gush, D. F. Scott, G. P. W. Jewitt et al., “Estimation of streamflow reductions resulting from commercial afforestation in South Africa,” WRC Report TT 173/02, Water Research Commission, Pretoria, South Africa, 2002. View at Google Scholar
  17. J. M. Bosch and J. D. Hewlett, “A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration,” Journal of Hydrology, vol. 55, no. 1–4, pp. 3–23, 1982. View at Google Scholar · View at Scopus
  18. D. F. Scott and R. E. Smith, “Preliminary empirical models to predict reductions in annual and low flows resulting from afforestation,” Water SA, vol. 23, pp. 135–140, 1997. View at Google Scholar
  19. L. Zhang, W. R. Dawes, and G. R. Walker, “Predicting the effect of vegetation changes on catchment average water balance,” CSIRO Technical Report 99/12, CSIRO, Canberra, Australia, 1999. View at Google Scholar
  20. M. B. Gush, “Modelling streamflow reductions resulting from commercial afforestation in South Africa: from research to application,” in Proceedings of the International Conference on Forest and Water, China, August 2006.
  21. W. S. Van Lill, F. J. Kruger, and D. B. Van Wyk, “The effect of afforestation with Eucalyptus grandis Hill ex Maiden and Pinus patula Schlecht. et. Cham. on streamflow from experimental catchments at Mokobulaan, Transvaal,” Journal of Hydrology, vol. 48, no. 1-2, pp. 107–118, 1980. View at Google Scholar · View at Scopus
  22. R. E. Smith and D. F. Scott, “The effects of afforestation on low flows in various regions of South Africa,” in Water SA, vol. 18, pp. 185–194, 1992.
  23. J. D. Hewlett and L. Pienaar, “Design and analysis of the catchment experiment,” in Proceedings of a symposium on use of small watersheds in determining effects of forest land use on water quality, E. H. White, Ed., pp. 88–106, University of Kentucky, Lexington, Ky, USA, May 1973.
  24. P. J. Dye, “How efficiently do Eucalyptus plantations use rainfall?” CSIR Report ENV-P-I 98204, Division of Water, Environment and Forest Technology, CSIR, Pretoria, South Africa, 1999. View at Google Scholar
  25. P. J. Dye, “Response of Eucalyptus grandis trees to soil water deficits,” Tree Physiology, vol. 16, pp. 233–238, 1996. View at Google Scholar
  26. P. J. Dye, A. G. Poulter, S. Soko, and D. Maphanga, “The determination of the relationship between transpiration rate and declining available water for Eucalyptus grandis,” WRC Report 441/1/97, Water Resource Commission, Pretoria, South Africa, 1997. View at Google Scholar
  27. B. W. Olbrich, “The verification of the heat pulse velocity technique for measuring sap flow in Eucalyptus grandis,” Canadian Journal of Forest Research, vol. 21, pp. 836–841, 1991. View at Google Scholar
  28. P. Dye, P. Vilakazi, M. Gush, R. Ndlela, and M. Royappen, “Investigation of the feasibility of using trunk growth increments to estimate water use of Eucalyptus grandis and Pinus patula plantations,” WRC Report 809/1/01, Water Research Commission, Pretoria, South Africa, 2001. View at Google Scholar
  29. O. L. Lange, R. Lösch, E. D. Schulze, and L. Kappen, “Responses of stomata to changes in humidity,” Planta, vol. 100, pp. 76–86, 1971. View at Google Scholar
  30. E. D. Schulze, “Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil,” Annual Review of Plant Physiology, vol. 37, pp. 247–274, 1986. View at Google Scholar
  31. M. T. Tyree and J. S. Sperry, “Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?” Plant Physiology, vol. 88, pp. 575–580, 1988. View at Google Scholar
  32. J. M. Campion, P. J. Dye, and M. C. Scholes, “Modelling maximum canopy conductance and transpiration in Eucalyptus grandis stands not subjected to soil water deficits,” Southern African Forestry Journal, no. 202, pp. 3–11, 2004. View at Google Scholar · View at Scopus
  33. P. J. Dye, S. Jacobs, and D. Drew, “Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa,” Forest Ecology and Management, vol. 193, no. 1-2, pp. 197–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. H. Knight, “Root distributions and water uptake patterns in eucalypts and other species,” in The Ways Trees Use Water, J. Landsberg, Ed., Water and Salinity Issues in Agroforestry No. 5, pp. 66–102, RIRDC, Barton, Australia, 1999. View at Google Scholar
  35. A. P. G. Schönau and D. C. Grey, “Site requirements of exotic tree species,” in Forest Handbook, K. von Gadow, Ed., pp. 82–94, South African Institute of Forestry, Pretoria, South Africa, 1987. View at Google Scholar
  36. D. I. Boden, “The relationship between soil water status, rainfall and the growth of Eucalyptus grandis,” South African Forestry Journal, vol. 156, pp. 49–55, 1990. View at Google Scholar
  37. H. L. Gholz, K. C. Ewel, and R. O. Teskey, “Water and forest productivity,” Forest Ecology and Management, vol. 30, no. 1–4, pp. 1–18, 1990. View at Google Scholar · View at Scopus
  38. J. J. Landsberg, K. H. Johnsen, T. J. Albaugh, H. L. Allen, and S. E. McKeand, “Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments,” Forest Science, vol. 47, no. 1, pp. 43–51, 2001. View at Google Scholar · View at Scopus
  39. D. White, M. Battaglia, J. Bruce et al., “Water-use efficient plantations—separating the wood from the leaves,” in Forest and Wood Products, Project No. PNC073-0708, p. 25, Australia Limited, 2009. View at Google Scholar
  40. P. J. Dye, “An investigation of the use of tree growth parameters to infer spatial and temporal patterns of moisture stress and reduced water use,” CSIR Report FOR-I 647, Division of Water, Environment and Forest Technology, CSIR, Pretoria, South Africa, 1996. View at Google Scholar
  41. P. J. Dye, S. Soko, and D. Maphanga, “Intra-annual variation in water use efficiency of three clones in kwaMbonambi, Zululand,” CSIR Report ENV/P/C, 97048, Division of Water, Environment and Forest Technology, CSIR, Pretoria, South Africa, 1997. View at Google Scholar
  42. D. Le Roux, W. D. Stock, W. J. Bond, and D. Maphanga, “Dry mass allocation, water use efficiency and δ13C in clones of Eucalyptus grandis, E. grandis × camaldulensis and E. grandis × nitens grown under two irrigation regimes,” Tree Physiology, vol. 16, no. 4, pp. 497–502, 1996. View at Google Scholar · View at Scopus
  43. R. M. Wise, P. J. Dye, and M. B. Gush, “A comparison of the biophysical and economic water-use efficiencies of indigenous and introduced forests in south africa,” Forest Ecology and Management, vol. 262, no. 6, pp. 906–915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. E. Schulze, “Hydrology and agrohydrology: a text to accompany the ACRU 3.00 Agrohydrological Modelling System,” WRC Report TT69/95, Water Research Commission, Pretoria, South Africa, 1995. View at Google Scholar
  45. G. P. W. Jewitt and R. E. Schulze, “Verification of the ACRU model for forest hydrology applications,” Water SA, vol. 25, no. 4, pp. 483–489, 1999. View at Google Scholar · View at Scopus
  46. R. Rivas and V. Caselles, “A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data,” Remote Sensing of Environment, vol. 93, no. 1-2, pp. 68–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Wang, P. Wang, Z. Li, M. Cribb, and M. Sparrow, “A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature,” Journal of Geophysical Research D, vol. 112, no. 15, Article ID D15107, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. R. K. Vinukollu, E. F. Wood, C. R. Ferguson, and J. B. Fisher, “Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches,” Remote Sensing of Environment, vol. 115, no. 3, pp. 801–823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water SA, vol. 33, no. 2, pp. 145–151, 2007. View at Google Scholar · View at Scopus
  50. T. C. Hsiao, “Plant responses to water stress,” Annual Review of Plant Physiology, vol. 24, pp. 519–570, 1973. View at Google Scholar
  51. H. R. Barnard and M. G. Ryan, “A test of the hydraulic limitation hypothesis in fast-growing Eucalyptus saligna,” Plant, Cell and Environment, vol. 26, no. 8, pp. 1235–1245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. M. Chaves, J. P. Maroco, and J. S. Pereira, “Understanding plant responses to drought—from genes to the whole plant,” Functional Plant Biology, vol. 30, no. 3, pp. 239–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Fabião, M. Madeira, E. Steen, T. Kätterer, C. Ribeiro, and C. Araújo, “Development of root biomass in an Eucalyptus globulus plantation under different water and nutrient regimes,” Plant and Soil, vol. 168-169, pp. 215–223, 1995. View at Google Scholar
  54. T. S. Grove, B. D. Thomson, and N. Malajczuk, “Nutritional physiology of eucalypts: uptake, distribution and utilization,” in Nutrition of Eucalypts, P. M. Attiwill and M. A. Adams, Eds., pp. 77–108, CSIRO, Collingwood, Australia, 1996. View at Google Scholar
  55. J. M. Campion, M. Nkosana, and M. C. Scholes, “Biomass and N and P pools in above- and below-ground components of an irrigated and fertilised Eucalyptus grandis stand in South Africa,” Australian Forestry, vol. 69, no. 1, pp. 48–57, 2006. View at Google Scholar · View at Scopus
  56. D. Binkley, J. L. Stape, and M. G. Ryan, “Thinking about efficiency of resource use in forests,” Forest Ecology and Management, vol. 193, no. 1-2, pp. 5–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. Stape, D. Binkley, and M. G. Ryan, “Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil,” Forest Ecology and Management, vol. 193, no. 1-2, pp. 17–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. G. D. Farquhar and R. A. Richards, “Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes,” Australian Journal of Plant Physiology, vol. 11, no. 6, pp. 539–552, 1984. View at Google Scholar · View at Scopus
  59. S. G. Pallardy and T. T. Kozlowski, Physiology of Woody Plants, Elsevier, Boston, Mass, USA, 2008.
  60. DWAF, Water-Use Licensing: the Policy and Procedure for Licensing Streamflow Reduction Activities, Department of Water Affairs and Forestry, Pretoria, South Africa, 1999.
  61. M. Gush, “Assessing hydrological impacts of tree-based bioenergy feedstock,” in Assessing the Sustainability of Bioenergy Projects in Developing Countries: A Framework for Policy Evaluation, J. M. Amezaga, G. von Maltitz, and S. Boyes, Eds., pp. 37–52, Newcastle University, Tyne and Wear, UK, 2010. View at Google Scholar
  62. J. S. Pereira and S. Pallardy, “Water stress limitations to tree productivity,” in Biomass Production by Fast-Growing Trees, J. S. Pereira and J. J. Landsberg, Eds., pp. 37–56, Kluwer Academic, Dodrecht, The Netherlands, 1989. View at Google Scholar
  63. D. I. Dickmann, “The ideotype concept applied to forest trees,” in Attributes of Trees as Crop Plants, M. G. R. Cannell and J. E. Jackson, Eds., pp. 89–101, Institute of Terrestrial Ecology, Lancaster, UK, 1985. View at Google Scholar
  64. R. Gonzalez, T. Treasure, J. Wright et al., “Exploring the potential of Eucalyptus for energy production in the Southern United States: financial analysis of delivered biomass. Part I,” Biomass and Bioenergy, vol. 35, no. 2, pp. 755–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Dougherty and J. Wright, “Silviculture and economic evaluation of eucalypt plantations in the southern US,” Bioresources, vol. 7, pp. 1994–2001, 2012. View at Google Scholar
  66. A. Demirbas, “Progress and recent trends in biofuels,” Progress in Energy and Combustion Science, vol. 33, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Berndes, “Bioenergy and water—the implications of large-scale bioenergy production for water use and supply,” Global Environmental Change, vol. 12, no. 4, pp. 253–271, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. M. Evans and M. J. Cohen, “Regional water resource implications of bioethanol production in the Southeastern United States,” Global Change Biology, vol. 15, no. 9, pp. 2261–2273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. P. W. Gerbens-Leenes, A. Y. Hoekstra, and T. van der Meer, “The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply,” Ecological Economics, vol. 68, no. 4, pp. 1052–1060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Beringer, W. Lucht, and S. Schapoff, “Bioenergy production potential of global biomass plantations under environmental and agricultural constraints,” GCB Bioenergy, vol. 3, pp. 299–312, 2011. View at Google Scholar
  71. A. Buyx and J. Tait, “Ethical framework for biofuels,” Science, vol. 332, no. 6029, pp. 540–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. BIS, Biofuels Industrial Strategy of the Republic of South Africa, Department of Minerals and Energy, Pretoria, South Africa, 2007.
  73. G. Jewitt and R. Kunz, “The impact of biofuel feedstock production on water resources: a developing country perspective,” Biofuels, Bioproducts and Biorefining, vol. 5, no. 4, pp. 387–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. B. G. Ridoutt and S. Pfister, “A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity,” Global Environmental Change, vol. 20, no. 1, pp. 113–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. J. S. King, R. Ceulemans, J. M. Albaugh et al., “The challenge of ligno-cellulosic bioenergy in a water-limited world,” BioScience, vol. 63, pp. 102–177, 2013. View at Google Scholar