International Journal of Genomics
 Journal metrics
See full report
Acceptance rate9%
Submission to final decision73 days
Acceptance to publication23 days
CiteScore4.200
Journal Citation Indicator0.460
Impact Factor2.326

Article of the Year 2021

Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress

Read the full article

 Journal profile

International Journal of Genomics publishes papers in all areas of genome-scale analysis, including bioinformatics, clinical and disease genomics, epigenomics, evolutionary and functional genomics, genome engineering, and synthetic genomics.

 Editor spotlight

Chief Editor, Professor Nislow, is currently based at the University of British Columbia as a Tier 1 Canada Research Chair in Translational Genomics, with a background in yeast genetics and genomics.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Three Prognostic Biomarkers Correlate with Immune Checkpoint Blockade Response in Bladder Urothelial Carcinoma

Aim. We aim to develop a signature that could accurately predict prognosis and evaluate the response to immune checkpoint blockade (ICB) in bladder urothelial carcinoma (BLCA). Methods. Based on comprehensive analysis of public database, we identified prognosis-related hub genes and investigated their predictive values for the ICB response in BLCA. Results. Among 69 common DEGs, three genes (AURKA, BIRC5, and CKS1B) were associated with poor prognosis, and which were related to histological subtypes, TP53 mutation status, and the C2 (IFN-gamma dominant) subtype. Three genes and their related risk model can effectively predict the response of immunotherapy. Their related drugs were identified through analysis of drug bank database. Conclusions. Three genes could predict prognosis and evaluate the response to ICB in BLCA.

Research Article

Pathogenic Process-Associated Transcriptome Analysis of Stemphylium lycopersici from Tomato

Tomato (Solanum lycopersicum) gray leaf spot disease is a predominant foliar disease of tomato in China that is caused mainly by the necrotrophic fungal pathogen Stemphylium lycopersici. Little is known regarding the pathogenic mechanisms of this broad-host-range pathogen. In this study, a comparative transcriptomic analysis was performed and more genetic information on the pathogenicity determinants of S. lycopersici during the infection process in tomato were obtained. Through an RNA sequencing (RNA-seq) analysis, 1,642 and 1,875 genes upregulated during the early infection and necrotrophic phases, respectively, were identified and significantly enriched in 44 and 24 pathways, respectively. The induction of genes associated with pectin degradation, adhesion, and colonization was notable during the early infection phase, whereas during the necrotrophic phase, some structural molecule activity-related genes were prominently induced. Additionally, some genes involved in signal regulation or encoding hemicellulose- and cellulose-degrading enzymes and extracellular proteases were commonly upregulated during pathogenesis. Overall, we present some putative key genes and processes that may be crucial for S. lycopersici pathogenesis. The abilities to adhere and colonize a host surface, effectively damage host cell walls, regulate signal transduction to manage infection, and survive in a hostile plant environment are proposed as important factors for the pathogenesis of S. lycopersici in tomato. The functional characterization of these genes provides an invaluable resource for analyses of this important pathosystem between S. lycopersici and tomato, and it may facilitate the generation of control strategies against this devastating disease.

Research Article

A Novel Hypoxia-Related Gene Signature with Strong Predicting Ability in Non-Small-Cell Lung Cancer Identified by Comprehensive Profiling

Background. Non-small-cell lung cancer (NSCLC) is the most common malignant tumor among males and females worldwide. Hypoxia is a typical feature of the tumor microenvironment, and it affects cancer development. Circular RNAs (circRNAs) have been reported to sponge miRNAs to regulate target gene expression and play an essential role in tumorigenesis and progression. This study is aimed at identifying whether circRNAs could be used as the diagnostic biomarkers for NSCLC. Methods. The heterogeneity of samples in this study was assessed by principal component analysis (PCA). Furthermore, the Gene Expression Omnibus (GEO) database was normalized by the affy R package. We further screened the differentially expressed genes (DEGs) and differentially expressed circular RNAs (DEcircRNAs) using the DEseq2 R package. Moreover, we analyzed the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DEGs using the cluster profile R package. Besides, the Gene Set Enrichment Analysis (GSEA) was used to identify the biological function of DEGs. The interaction between DEGs and the competing endogenous RNAs (ceRNA) network was detected using STRING and visualized using Cytoscape. Starbase predicted the miRNAs of target hub genes, and miRanda predicted the target miRNAs of circRNAs. The RNA-seq profiler and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Then, the variables were assessed by the univariate and multivariate Cox proportional hazard regression models. Significant variables in the univariate Cox proportional hazard regression model were included in the multivariate Cox proportional hazard regression model to analyze the association between the variables of clinical features. Furthermore, the overall survival of variables was determined by the Kaplan-Meier survival curve, and the time-dependent receiver operating characteristic (ROC) curve analysis was used to calculate and validate the risk score in NSCLC patients. Moreover, predictive nomograms were constructed and used to predict the prognostic features between the high-risk and low-risk score groups. Results. We screened a total of 2039 DEGs, including 1293 upregulated DEGs and 746 downregulated DEGs in hypoxia-treated A549 cells. A549 cells treated with hypoxia had a total of 70 DEcircRNAs, including 21 upregulated and 49 downregulated DEcircRNAs, compared to A549 cells treated with normoxia. The upregulated genes were significantly enriched in 284 GO terms and 42 KEGG pathways, while the downregulated genes were significantly enriched in 184 GO terms and 25 KEGG pathways. Moreover, the function analysis by GSEA showed enrichment in the enzyme-linked receptor protein signaling pathway, hypoxia-inducible factor- (HIF-) 1 signaling pathway, and G protein-coupled receptor (GPCR) downstream signaling. Furthermore, six hub modules and 10 hub genes, CDC45, EXO1, PLK1, RFC4, CCNB1, CDC6, MCM10, DLGAP5, AURKA, and POLE2, were identified. The ceRNA network was constructed, and it consisted of 4 circRNAs, 14 miRNAs, and 38 mRNAs. The ROC curve was constructed and calculated. The area under the curve (AUC) value was 0.62, and the optimal threshold was 0.28. Based on the optimal threshold, the patients were divided into the high-risk score and low-risk score groups. The survival rate in the high-risk score group was lower than that in the low-risk score group. The expression of SERPINE1, STC2, and LPCAT1; clinical stage; and age of the patient were significantly correlated with the high-risk score. Moreover, nomograms were established based on the risk factors in multivariate analysis, and the median survival time, 3-year survival probability, and 5-year survival were possibly predicted according to nomograms. Conclusion. The ceRNA network associated with NSCLC was identified, and the hub genes, circRNAs, might act as the potential biomarkers for NSCLC.

Research Article

Genome-Wide Identification and Characterization of PRR Gene Family and their Diurnal Rhythmic Expression Profile in Maize

As essential components of the circadian clock, the pseudo-response regulator (PRR) gene family plays critical roles in plant photoperiod pathway. In this study, we performed a genome-wide identification and a systematic analysis of the PRR gene family in maize. Nine ZmPRRs were identified, and the gene structure, conserved motif, evolution relationship, and expression pattern of ZmPRRs were analyzed comprehensively. Phylogenetic analysis indicated that the nine ZmPRR genes were divided into three groups, except for ZmPRR73, two of which were highly homologous to each of the AtPRR or OsPRR quintet members. Promoter cis-element analysis of ZmPRRs demonstrated that they might be involved in multiple signaling transduction pathways, such as light response, biological or abiotic stress response, and hormone response. qRT-PCR analysis revealed that the levels of ZmPRRs transcripts varied considerably and exhibited a diurnal rhythmic oscillation expression pattern in the given 24-h period under both SD and LD conditions, which indicated that the level of transcription of ZmPRRs expression is subjected to a circadian rhythm and modulated by light and the circadian clock. The present study will provide an insight into further exploring the biological function and regulatory mechanism of ZmPRR genes in circadian rhythm and response to photoperiod in maize.

Research Article

NEIL3 Mediates Lung Cancer Progression and Modulates PI3K/AKT/mTOR Signaling: A Potential Therapeutic Target

Background. Nei endonuclease VIII-like 3 (NEIL3) is widely involved in pathophysiological processes of the body; however, its role in lung cancer has not been conclusively determined. Objective. This study is aimed at exploring the role of NEIL3 in lung cancer. Methods. The public data used in this study were downloaded from The Cancer Genome Atlas (TCGA) database. “Limma” in R was used for the analysis of differentially expressed genes. Clinical correlations and prognostic analyses were performed using the survival package in R. The proliferative abilities of lung cancer cells were evaluated by the CCK8 and colony formation assays while their invasive and migration abilities were assessed by the transwell and wound healing assays. Quantitative real-time PCR (qRT-PCR) and western blot analyses were utilized to detect RNA and protein levels. Biological differences between groups were determined by gene set enrichment analysis (GSEA). Tumor Immune Dysfunction and Exclusion (TIDE) as well as Genomics of Drug Sensitivity in Cancer (GDSC) was used for immunotherapeutic and chemotherapeutic sensitivity analyses. Results. NEIL3 was upregulated in NSCLC tissues and cell lines, implying that it is involved in lung cancer initiation and progression. Clinical correlation and prognostic analyses showed that NEIL3 was associated with worse clinical features (stage and T and N classifications) and poor prognostic outcomes. In vitro, NEIL3 significantly enhanced NSCLC proliferation, invasion, and migration. GSEA indicated that NEIL3 might be involved in PI3K/AKT/mTOR, G2/M checkpoints, and E2F target pathways. Inhibition of NEIL3 suppressed cyclinD1 and p-AKT protein levels; however, it had no effects on AKT levels, indicating that NEIL3 can partially activate the PI3K/AKT/mTOR signaling pathway. The predicted result of TIDE indicated that immunotherapeutic nonresponders had elevated NEIL3 levels. Moreover, there was a positive correlation between NEIL3 levels and chemosensitivity to cisplatin and paclitaxel. Conclusion. In general, NEIL3 mediates NSCLC progression and affects sensitivity to immunotherapy and chemotherapy; therefore, it is a potential molecular target for treatment.

Research Article

Identification and Validation of Inflammatory Response-Related Gene Signatures to Predict the Prognosis of Neuroblastoma

Background. Neuroblastoma (NB) is the third most common malignant tumor in children. The inflammation is believed to be closely related to NB patients’ prognosis. However, there is no comprehensive research to study the role of inflammatory response-related gene (IRRG) in NB patients. Methods. We downloaded the gene expression profiles of NB patients from GEO and TARGET database, and the expression of 200 IRRGs was extracted. Then, we performed differentially analysis between INSS stage 4 and INSS stage 4S NB patients. The univariate and multivariate Cox regression analyses were performed to screen out the overall survival- (OS-) and event-free survival- (EFS-) related IRRGs in GSE49710, and two signatures were constructed; both signatures were evaluated by Kaplan-Meier (K-M) survival curve and receiver operating characteristic (ROC) curve. Finally, the TARGET cohort was used to validate IRRG signatures, and the independence of the prognostic IRRG signatures was evaluated by integrating clinical information. Results. We screened out 10 OS-related IRRGs and 11 EFS-related IRRGs. Then, we identified that OS- and EFS-related IRRG signatures and found that the OS and EFS of NB patients in the low-risk group were significantly superior than those in the high-risk group (both value < 0.0001). The AUC values of 3-, 5-, and 7-year OS are 0.910, 0.933, and 0.921, respectively, and 3-, 5-, and 7-year EFS are 0.840, 0.835, and 0.837, respectively. In addition, we found that both IRRG signatures can be used as independent prognostic indicators for patients with NB. Both IRRG signatures still have good predictive ability in validation cohort. Conclusions. We constructed and validated two prognostic gene signatures based on IRRGs. Our study helped us to better understand the role of inflammation in NB and provided new insights for the prognosis assessment and treatment strategy for NB patients.

International Journal of Genomics
 Journal metrics
See full report
Acceptance rate9%
Submission to final decision73 days
Acceptance to publication23 days
CiteScore4.200
Journal Citation Indicator0.460
Impact Factor2.326
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.