International Journal of Genomics
 Journal metrics
Acceptance rate35%
Submission to final decision76 days
Acceptance to publication31 days
CiteScore3.400
Impact Factor2.414

Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress

Read the full article

 Journal profile

International Journal of Genomics publishes papers in all areas of genome-scale analysis, including bioinformatics, clinical and disease genomics, epigenomics, evolutionary and functional genomics, genome engineering, and synthetic genomics.

 Editor spotlight

Chief Editor, Professor Nislow, is currently based at the University of British Columbia as a Tier 1 Canada Research Chair in Translational Genomics, with a background in yeast genetics and genomics.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Patterns of Natural Selection on Mitochondrial Protein-Coding Genes in Lungless Salamanders: Relaxed Purifying Selection and Presence of Positively Selected Codon Sites in the Family Plethodontidae

There are two distinct lungless groups in caudate amphibians (salamanders and newts) (the family Plethodontidae and the genus Onychodactylus, from the family Hynobiidae). Lunglessness is considered to have evolved in response to environmental and/or ecological adaptation with respect to oxygen requirements. We performed selection analyses on lungless salamanders to elucidate the selective patterns of mitochondrial protein-coding genes associated with lunglessness. The branch model and RELAX analyses revealed the occurrence of relaxed selection (an increase of the dN/dS value) in most mitochondrial protein-coding genes of plethodontid salamander branches but not in those of Onychodactylus. Additional branch model and RELAX analyses indicated that direct-developing plethodontids showed the relaxed pattern for most mitochondrial genes, although metamorphosing plethodontids had fewer relaxed genes. Furthermore, aBSREL analysis detected positively selected codons in three plethodontid branches but not in Onychodactylus. One of these three branches corresponded to the most recent common ancestor, and the others corresponded with the most recent common ancestors of direct-developing branches within Hemidactyliinae. The positive selection of mitochondrial protein-coding genes in Plethodontidae is probably associated with the evolution of direct development.

Research Article

Retrospective Use of Whole-Genome Sequencing Expands the Multicountry Outbreak Cluster of Listeria monocytogenes ST1247

Listeria monocytogenes sequence type 1247 clonal complex 8 caused a prolonged multicountry outbreak in five EU countries: Denmark, Estonia, Finland, France, and Sweden. A total of 22 disease cases were identified with onset of symptoms between July 2014 and February 2019. Five patients died due to, or with, the disease. The retrospective analysis of L. monocytogenes isolate VLTRLM2013 revealed the presence of an outbreak-related strain (cgMLST type L2-SL8-ST1247-CT4158) in ready-to-eat fish product more than a year prior to the first outbreak-related cases. Reference outbreak strain and VLTRLM2013 strain were compared using core genome and whole-genome multilocus sequence typing analyses. Genomic level differences of the persistent L. monocytogenes strains associated with a prolonged multicountry foodborne listeriosis outbreak are described. It was concluded that the persistent nature of the multicountry outbreak-related L. monocytogenes strain VLTRLM2013 together with stress island, virulence, and antibiotic resistance genes could potentially be the determining factors for the extensive and prolonged outbreak affecting five European Union countries. Our results support the systematic application of whole-genome sequencing in food and public health surveillance and further encourages its wide adoption.

Research Article

MicroRNA-497-5p Is Downregulated in Hepatocellular Carcinoma and Associated with Tumorigenesis and Poor Prognosis in Patients

Background. MicroRNAs (miRNAs) have been demonstrated to exhibit important regulatory roles in multiple malignancies, including hepatocellular carcinoma (HCC). hsa-miR-497-5p was reported to involve in cancer progression and poor prognosis in many kinds of tumors. However, the expression and its clinical significance of hsa-miR-497-5p in HCC remain unclear. Methods. In the present study, we investigated the expression of hsa-miR-497-5p in HCC and analyzed the correction of clinical features with prognosis. The expression levels of hsa-miR-497-5p and potential target genes were analyzed in HCC and adjacent noncancerous tissues using The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze hsa-miR-497-5p levels in 328 HCC tissues and 30 paired adjacent noncancer tissues. Overall survival (OS) and progression-free survival (PFS) of patients with HCC were assessed using the Kaplan-Meier method and the log-rank test. Results. The hsa-miR-497-5p expression levels were decreased, and its target genes ACTG1, CSNK1D, PPP1CC, and BIRC5 were upregulated in HCC tissues compared with normal tissues. Lower levels of hsa-miR-497-5p expression and higher levels of the four target genes were significantly associated with higher tumor diameter. Moreover, patients with lower hsa-miR-497-5p expression and higher target genes levels had shorter OS. Conclusion. The expression levels of hsa-miR-497-5p may play an important regulatory role in HCC and are closely correlated with HCC progression and poor prognosis in patients. The hsa-miR-497-5p may be a specific therapeutic target for the treatment of HCC.

Research Article

Genetic Alteration Profiles and Clinicopathological Associations in Atypical Parathyroid Adenoma

Genomic aberrations associated with atypical parathyroid adenoma (AA) are poorly understood. Thus, herein, we sought to expand our current understanding of the molecular basis of atypical parathyroid adenomas. We analyzed 134 samples that had been surgically obtained from parathyroid tumors, including parathyroid carcinomas, atypical parathyroid adenomas, and parathyroid adenomas. The tumors were harvested from formalin-fixed, paraffin-embedded tissues. Fifteen tumor-related genes from recently published genome sequencing data were subjected to targeted sequencing analysis, and an average sequencing depth of 500x was achieved. Sixteen (16/50, 32%) AA tumors harbored at least one of the following genomic alterations: CDC73 (12, 24%), EZH2 (4, 8%), HIC1 (1, 2%), and CDKN2A (1, 2%). Our study identified, for the first time, a relatively high frequency of genomic alterations in patients with AA in a Chinese population. This suggests that AA arises de novo, rather than developing from a parathyroid adenoma. Altogether, these findings will improve our understanding of the malignant potential of parathyroid tumors at the molecular level.

Research Article

Characterizing Repeats in Two Whole-Genome Amplification Methods in the Reniform Nematode Genome

One of the major problems in the U.S. and global cotton production is the damage caused by the reniform nematode, Rotylenchulus reniformis. Amplification of DNA from single nematodes for further molecular analysis can be challenging sometimes. In this research, two whole-genome amplification (WGA) methods were evaluated for their efficiencies in DNA amplification from a single reniform nematode. The WGA was carried out using both REPLI-g Mini and Midi kits, and the GenomePlex single cell whole-genome amplification kit. Sequence analysis produced 4 Mb and 12 Mb of genomic sequences for the reniform nematode using REPLI-g and SIGMA libraries. These sequences were assembled into 28,784 and 24,508 contigs, respectively, for REPLI-g and SIGMA libraries. The highest repeats in both libraries were of low complexity, and the lowest for the REPLI-g library were for satellites and for the SIGMA library, RTE/BOV-B. The same kind of repeats were observed for both libraries; however, the SIGMA library had four other repeat elements (Penelope (long interspersed nucleotide element (LINE)), RTE/BOV-B (LINE), PiggyBac, and Mirage/P-element/Transib), which were not seen in the REPLI-g library. DNA transposons were also found in both libraries. Both reniform nematode 18S rRNA variants (RN_VAR1 and RN_VAR2) could easily be identified in both libraries. This research has therefore demonstrated the ability of using both WGA methods, in amplification of gDNA isolated from single reniform nematodes.

Research Article

Isolation and Functional Determination of SKOR Potassium Channel in Purple Osier Willow, Salix purpurea

Potassium (K+) plays key roles in plant growth and development. However, molecular mechanism studies of K+ nutrition in forest plants are largely rare. In plants, SKOR gene encodes for the outward rectifying Shaker-type K+ channel that is responsible for the long-distance transportation of K+ through xylem in roots. In this study, we determined a Shaker-type K+ channel gene in purple osier (Salix purpurea), designated as SpuSKOR, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuSKOR was predominantly expressed in roots, and expression decreased under K+ depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K+ concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K+ channel in purple osier. This study provides theoretical basis for revealing the mechanism of K+ transport and distribution in woody plants.

International Journal of Genomics
 Journal metrics
Acceptance rate35%
Submission to final decision76 days
Acceptance to publication31 days
CiteScore3.400
Impact Factor2.414
 Submit