International Journal of Genomics

International Journal of Genomics / 2003 / Article

Conference review | Open Access

Volume 4 |Article ID 384348 |

Michal Linial, "Fishing With (Proto)Net—A Principled Approach to Protein Target Selection", International Journal of Genomics, vol. 4, Article ID 384348, 7 pages, 2003.

Fishing With (Proto)Net—A Principled Approach to Protein Target Selection

Received13 Jul 2003
Revised05 Aug 2003
Accepted05 Aug 2003


Structural genomics strives to represent the entire protein space. The first step towards achieving this goal is by rationally selecting proteins whose structures have not been determined, but that represent an as yet unknown structural superfamily or fold. Once such a structure is solved, it can be used as a template for modelling homologous proteins. This will aid in unveiling the structural diversity of the protein space. Currently, no reliable method for accurate 3D structural prediction is available when a sequence or a structure homologue is not available. Here we present a systematic methodology for selecting target proteins whose structure is likely to adopt a new, as yet unknown superfamily or fold. Our method takes advantage of a global classification of the sequence space as presented by ProtoNet-3D, which is a hierarchical agglomerative clustering of the proteins of interest (the proteins in Swiss-Prot) along with all solved structures (taken from the PDB). By navigating in the scaffold of ProtoNet-3D, we yield a prioritized list of proteins that are not yet structurally solved, along with the probability of each of the proteins belonging to a new superfamily or fold. The sorted list has been self-validated against real structural data that was not available when the predictions were made. The practical application of using our computational–statistical method to determine novel superfamilies for structural genomics projects is also discussed.

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.