International Journal of Genomics

International Journal of Genomics / 2003 / Article

Primary research paper | Open Access

Volume 4 |Article ID 758291 | https://doi.org/10.1002/cfg.290

Guoping Shu, Beiyan Zeng, Yiping P. Chen, Oscar H. Smith, "Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data", International Journal of Genomics, vol. 4, Article ID 758291, 13 pages, 2003. https://doi.org/10.1002/cfg.290

Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data

Received20 Nov 2002
Revised24 Feb 2003
Accepted26 Feb 2003

Abstract

Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed.

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views135
Downloads627
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.