Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2009, Article ID 380719, 11 pages
http://dx.doi.org/10.1155/2009/380719
Review Article

Reverse Genetics for Functional Genomics of Phytopathogenic Fungi and Oomycetes

1The MOA Key Laboratory of Molecular Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
2Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2
3Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada S7N 5A8

Received 2 February 2009; Revised 30 May 2009; Accepted 7 July 2009

Academic Editor: J. Peter W. Young

Copyright © 2009 Vijai Bhadauria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Soanes, T. A. Richards, and N. J. Talbot, “Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity?” The Plant Cell, vol. 19, no. 11, pp. 3318–3326, 2007. View at Publisher · View at Google Scholar
  2. P. Hieter and M. Boguski, “Functional genomics: it's all how you read it,” Science, vol. 278, no. 5338, pp. 601–602, 1997. View at Publisher · View at Google Scholar
  3. D. J. S. Barr, “Evolution and kingdoms from the perspective of a mycologist,” Mycologia, vol. 84, pp. 1–11, 1992. View at Google Scholar
  4. A. G. B. Simpson and A. J. Roger, “Eukaryotic evolution: getting to the root of the problem,” Current Biology, vol. 12, no. 20, pp. R691–R693, 2002. View at Publisher · View at Google Scholar
  5. W. E. Timberlake and M. A. Marshall, “Genetic engineering of filamentous fungi,” Science, vol. 244, pp. 1313–1317, 1989. View at Google Scholar
  6. A. Goffeau, “Yeast genes in search of functions,” Nature, vol. 369, pp. 101–102, 1994. View at Google Scholar
  7. J. Wendland, “PCR-based methods facilitate targeted gene manipulations and cloning procedures,” Current Genetics, vol. 44, pp. 115–123, 2003. View at Google Scholar
  8. S. Scherer and R. W. Davis, “Replacement of chromosome segments with altered DNA sequences constructed in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 10, pp. 4951–4955, 1979. View at Google Scholar
  9. J. Kämper, “A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis,” Molecular Genetics and Genomics, vol. 271, no. 1, pp. 103–110, 2004. View at Publisher · View at Google Scholar
  10. A. Brachmann, J. König, C. Julius, and M. Feldbrügge, “A reverse genetic approach for generating gene replacement mutants in Ustilago maydis,” Molecular Genetics and Genomics, vol. 272, no. 2, pp. 216–226, 2004. View at Publisher · View at Google Scholar
  11. Y. Cho, J. Davis, K. H. Kim et al., “A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs,” Molecular Plant Microbe Interaction, vol. 19, no. 1, pp. 7–15, 2006. View at Google Scholar
  12. N. J. Talbot, D. J. Ebbole, and J. E. Hamer, “Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea,” The Plant Cell, vol. 5, no. 11, pp. 1575–1590, 1993. View at Publisher · View at Google Scholar
  13. J. R. Xu and J. E. Hamer, “MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea,” Genes & Development, vol. 10, no. 21, pp. 2696–2706, 1996. View at Google Scholar
  14. W. Choi and R. A. Dean, “The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development,” The Plant Cell, vol. 9, no. 11, pp. 1973–1983, 1997. View at Publisher · View at Google Scholar
  15. J. R. Xu, C. J. Staiger, and J. E. Hamer, “Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host ceils but allows activation of plant defence responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 12713–12718, 1998. View at Google Scholar
  16. M. Urban, T. Bhargava, and J. E. Hamer, “An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease,” The EMBO Journal, vol. 18, no. 3, pp. 512–521, 1999. View at Publisher · View at Google Scholar
  17. C. Xue, G. Park, W. Choi, L. Zheng, R. A. Dean, and J.-R. Xu, “Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus,” The Plant Cell, vol. 14, no. 9, pp. 2107–2119, 2002. View at Publisher · View at Google Scholar
  18. H. U. Böhnert, I. Fudal, W. Dioh, D. Tharreau, J. L. Notteghem, and M. H. Lebrun, “A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice,” The Plant Cell, vol. 16, no. 9, pp. 2499–2513, 2004. View at Publisher · View at Google Scholar
  19. L. Li, C. Xue, K. Bruno, M. Nishimura, and J. R. Xu, “Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea,” Molecular Plant-Microbe Interactions, vol. 17, no. 5, pp. 547–556, 2004. View at Google Scholar
  20. S. L. Tucker, C. R. Thornton, K. Tasker et al., “A fungal metallothionein is required for pathogenicity of Magnaporthe grisea,” The Plant Cell, vol. 16, no. 6, pp. 1575–1588, 2004. View at Publisher · View at Google Scholar
  21. X.-H. Liu, J.-P. Lu, L. Zhang, B. Dong, H. Min, and F.-C. Lin, “Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in Appressorium turgor and pathogenesis,” Eukaryotic Cell, vol. 6, no. 6, pp. 997–1005, 2007. View at Publisher · View at Google Scholar
  22. P. Skamnioti and S. J. Gurr, “Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence,” The Plant Cell, vol. 19, no. 8, pp. 2674–2689, 2007. View at Publisher · View at Google Scholar
  23. M.-H. Chi, S.-Y. Park, S. Kim, and Y.-H. Lee, “A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host,” PLoS Pathogens, vol. 5, no. 4, article e1000401, 2009. View at Publisher · View at Google Scholar
  24. Y.-D. Wei, W. Shen, M. Dauk, F. Wang, G. Selvaraj, and J. Zou, “Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen,” The Journal of Biological Chemistry, vol. 279, no. 1, pp. 429–435, 2004. View at Publisher · View at Google Scholar
  25. S. A. Stephenson, C. M. Stephens, D. J. Maclean, and J. M. Manners, “CgDN24: a gene involved in hyphal development in the fungal phytopathogen Colletotrichum gloeosporioides,” Microbiological Research, vol. 160, no. 4, pp. 389–397, 2005. View at Publisher · View at Google Scholar
  26. J. M. Görlach, E. V. D. Knaap, and J. D. Walton, “Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum,” Applied and Environmental Microbiology, vol. 64, no. 2, pp. 385–391, 1998. View at Google Scholar
  27. N. J. Jenczmionka and W. Schäfer, “The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes,” Current Genetics, vol. 47, no. 1, pp. 29–36, 2005. View at Publisher · View at Google Scholar
  28. H. Shafran, I. Miyara, R. Eshed, D. Prusky, and A. Sherman, “Development of new tools for studying gene function in fungi based on the Gateway system,” Fungal Genetics and Biology, vol. 45, no. 8, pp. 1147–1154, 2008. View at Publisher · View at Google Scholar
  29. A. Abe, E. B. Elegado, and T. Sone, “Construction of pDESTR, a GATEWAY vector for gene disruption in filamentous fungi,” Current Microbiology, vol. 52, no. 3, pp. 210–215, 2006. View at Publisher · View at Google Scholar
  30. P. M. Waterhouse, M. W. Graham, and M. Wang, “Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13959–13964, 1998. View at Publisher · View at Google Scholar
  31. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar
  32. S. M. Hammond, S. Boettcher, A. A. Caudy, R. Kobayashi, and G. J. Hannon, “Argonaute2, a link between genetic and biochemical analyses of RNAi,” Science, vol. 293, no. 5532, pp. 1146–1150, 2001. View at Publisher · View at Google Scholar
  33. G. J. Hannon, “RNA interference,” Nature, vol. 418, pp. 244–251, 2002. View at Google Scholar
  34. N. Kadotani, H. Nakayashiki, Y. Tosa, and S. Mayama, “RNA silencing in the phytopathogenic fungus Magnaporthe oryzae,” Molecular Plant-Microbe Interactions, vol. 16, no. 9, pp. 769–776, 2003. View at Google Scholar
  35. P. van West, S. Kamoun, J. W. van't Klooster, and F. Govers, “Internuclear gene silencing in Phytophthora infestans,” Molecular Cell, vol. 3, no. 3, pp. 339–348, 1999. View at Publisher · View at Google Scholar
  36. M. Latijnhouwers, W. Ligterink, V. G. A. A. Vleeshouwers, P. West, and F. Govers, “A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans,” Molecular Microbiology, vol. 51, pp. 925–936, 2004. View at Google Scholar
  37. S. C. Whisson, A. O. Avrova, P. V. West, and J. T. Jones, “A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans,” Molecular Plant Pathology, vol. 6, no. 2, pp. 153–163, 2005. View at Publisher · View at Google Scholar
  38. M. D. De Backer, M. Raponi, and G. M. Arndt, “RNA-mediated gene silencing in non-pathogenic and pathogenic fungi,” Current Opinion in Microbiology, vol. 5, no. 3, pp. 323–329, 2002. View at Publisher · View at Google Scholar
  39. M. Akihiro, U. Makoto, A. Sakae, and K. Junichi, “RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae,” FEMS Microbiology Letters, vol. 269, no. 1, pp. 85–89, 2007. View at Google Scholar
  40. Q. B. Nguyen, N. Kadotani, S. Kasahara, Y. Tosa, S. Mayama, and H. Nakayashiki, “Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system,” Molecular Microbiology, vol. 68, no. 6, pp. 1348–1365, 2008. View at Publisher · View at Google Scholar
  41. R. J. Weld, K. M. Plummer, M. A. Carpenter, and H. J. Ridgway, “Approaches to functional genomics in filamentous fungi,” Cell Research, vol. 16, no. 1, pp. 31–44, 2006. View at Publisher · View at Google Scholar
  42. H. Nakayashiki and Q. B. Nguyen, “RNA interference: roles in fungal biology,” Current Opinion in Microbiology, vol. 11, no. 6, pp. 1–9, 2008. View at Publisher · View at Google Scholar
  43. J. S. Brown and D. W. Holden, “Insertional mutagenesis of pathogenic fungi,” Current Opinion in Microbiology, vol. 1, no. 4, pp. 390–394, 1998. View at Google Scholar
  44. E. D. Mullins, X. Chen, P. Romaine, R. Raina, D. M. Geiser, and S. Kang, “Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer,” Phytopathology, vol. 91, no. 2, pp. 173–180, 2001. View at Google Scholar
  45. C. B. Michielse, P. J. J. Hooykaas, C. A. van den Hondel, and A. F. J. Ram, “Agrobacterium-mediated transformation as a tool for functional genomics in fungi,” Current Genetics, vol. 48, no. 1, pp. 1–17, 2005. View at Publisher · View at Google Scholar
  46. C. B. Michielse, P. J. Hooykaas, C. A. van den Hondel, and A. F. Ram, “Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori,” Nature Protocols, vol. 3, no. 10, pp. 1671–1678, 2008. View at Publisher · View at Google Scholar
  47. S. Rolland, C. Jobic, M. Fevre, and C. Bruel, “Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences,” Current Genetics, vol. 44, no. 3, pp. 164–171, 2003. View at Publisher · View at Google Scholar
  48. M. J. de Groot, P. Bundock, P. J. Hooykaas, and A. G. Beijersbergen, “Agrobacterium-mediated transformation of filamentous fungi,” Nature Biotechnology, vol. 16, no. 9, pp. 839–842, 1998. View at Google Scholar
  49. G. Tsuji, S. Fujii, N. Hirose, S. Tsuge, T. Shiraishi, and Y. Kubo, “Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium,” Journal of General Plant Pathology, vol. 69, pp. 230–239, 2003. View at Google Scholar
  50. H. Takahara, G. Tsuji, Y. Kubo et al., “Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis in Colletotrichum trifolii,” Journal of General Plant Pathology, vol. 70, pp. 93–96, 2004. View at Google Scholar
  51. S. F. Covert, P. Kapoor, M.-H. Lee, A. Briley, and C. J. Nairn, “Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum,” Mycological Research, vol. 105, no. 3, pp. 259–264, 2001. View at Publisher · View at Google Scholar
  52. C.-H. Khang, S.-Y. Park, Y.-H. Lee, and S. Kang, “A dual selection based, targeted disruption tool for Magnaporthe grisea and Fusarium oxysporum,” Funagl Genetics and Biology, vol. 42, no. 6, pp. 483–492, 2005. View at Google Scholar
  53. M. Eckerta, K. Maguirea, M. Urbana et al., “Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp,” FEMS Microbiology Letters, vol. 112, no. 3, pp. 407–413, 2008. View at Google Scholar
  54. H. S. Rho, S. Kang, and Y.-H. Lee, “Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea,” Molecules and cells, vol. 12, no. 3, pp. 407–411, 2001. View at Google Scholar
  55. J. Jeon, S. Y. Park, M. H. Chi et al., “Genome-wide functional analysis of pathogenicity genes in the rice blast fungus,” Nature Genetics, vol. 39, no. 4, pp. 561–565, 2007. View at Google Scholar
  56. L. H. Zwiers and M. A. de Waard, “Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola,” Current Genetics, vol. 39, no. 5-6, pp. 388–393, 2001. View at Publisher · View at Google Scholar
  57. A. M. Fitzgerald, A. M. Mudge, A. P. Gleave, and K. M. Plummer, “Agrobacterium and PEG-mediated transformation of the phytopathogenic fungus Venturia inaequalis,” Mycological Research, vol. 107, pp. 803–810, 2003. View at Google Scholar
  58. I. Vijn and F. Govers, “Agrobacterium tumefaciens-mediated transformation of the oomycete plant pathogen Phytophthora infestans,” Molecular Plant Pathology, vol. 4, no. 6, pp. 459–467, 2003. View at Publisher · View at Google Scholar
  59. R. J. Gouka, P. J. J. Hooykaas, P. Bundock, W. Musters, C. T. Verrips, and M. J. A. de Groot, “Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination,” Nature Biotechnology, vol. 17, no. 6, pp. 598–601, 1999. View at Publisher · View at Google Scholar
  60. C. B. Michielse, A. F. Ram, and C. A. van den Hondel, “The Aspergillus nidulans amdS gene as a marker for the identification of multicopy T-DNA integration events in Agrobacterium-mediated transformation of Aspergillus awamori,” Current Genetics, vol. 45, no. 6, pp. 399–403, 2004. View at Publisher · View at Google Scholar
  61. P. J. Riggle and C. A. Kumamoto, “Genetic analysis in fungi using restriction-enzyme-mediated integration,” Current Opinion in Microbiology, vol. 1, no. 4, pp. 395–399, 1998. View at Google Scholar
  62. R. H. Schiestl and T. D. Petes, “Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7585–7589, 1991. View at Google Scholar
  63. G. Yang, M. S. Rose, B. G. Turgeon, and O. C. Yoder, “A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin,” Plant Physiology, vol. 8, no. 11, pp. 2139–2150, 1996. View at Publisher · View at Google Scholar
  64. Z. Shi, D. Christian, and H. Leung, “Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid DNA,” Phytopathology, vol. 85, no. 3, pp. 329–333, 1995. View at Google Scholar
  65. J. A. Sweigard, A. M. Carroll, L. Farrall et al., “Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis,” Molecular Plant-Microbe Interaction, vol. 11, pp. 404–412, 1998. View at Google Scholar
  66. T. K. Mitchell and R. A. Dean, “The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea,” The Plant Cell, vol. 7, no. 11, pp. 1869–1878, 1995. View at Publisher · View at Google Scholar
  67. M. Bolker, H. U. Böhnert, K. H. Braun, J. Gorl, and R. Kahmann, “Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI),” Molecular and General Genetics, vol. 248, no. 5, pp. 547–552, 1995. View at Google Scholar
  68. R. S. Redman and R. J. Rodriguez, “Factors affecting the efficient transformation of Colletotrichum species,” Experimental Mycology, vol. 18, no. 3, pp. 230–246, 1994. View at Publisher · View at Google Scholar
  69. F. J. Maier and W. Schafer, “Mutagenesis via insertional or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi,” Biological Chemistry, vol. 380, no. 7-8, pp. 855–864, 1999. View at Publisher · View at Google Scholar
  70. V. S. Te'o, P. L. Bergquist, and K. M. Nevalainen, “Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system,” Journal of Microbiological Methods, vol. 52, no. 3, pp. 393–399, 2002. View at Publisher · View at Google Scholar
  71. C. Cvitanich and H. S. Judelson, “Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment,” Current Genetics, vol. 42, no. 4, pp. 228–235, 2003. View at Google Scholar
  72. K. R. Chung, M. Ehrenshaft, D. K. Wetzel, and M. E. Daub, “Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae,” Molecular Genetics and Genomics, vol. 270, no. 2, pp. 103–113, 2003. View at Publisher · View at Google Scholar
  73. J. S. Brown, A. Aufauvre-Brown, and D. W. Holden, “Insertional mutagenesis of Aspergillus fumigatus,” Molecular and General Genetics, vol. 259, no. 3, pp. 327–335, 1998. View at Publisher · View at Google Scholar
  74. M. R. Thon, E. M. Nuckles, and L. J. Vaillancourt, “Restriction enzyme mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola,” Molecular Plant-Microbe Interaction, vol. 13, pp. 1356–1365, 2000. View at Google Scholar
  75. R. S. Redman, J. C. Ranson, and R. J. Rodriguez, “Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption,” Molecular Plant-Microbe Interactions, vol. 12, no. 11, pp. 969–975, 1999. View at Google Scholar
  76. C. W. Rogers, M. P. Challen, J. R. Green, and J. M. Whipps, “Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans,” FEMS Microbiology Letters, vol. 241, no. 2, pp. 207–214, 2004. View at Publisher · View at Google Scholar
  77. P. V. Balhadere, A. J. Foster, and N. J. Talbot, “Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis,” Molecular Plant-Microbe Interactions, vol. 12, no. 2, pp. 129–142, 1999. View at Google Scholar
  78. B. M. Tyler, S. Tripathy, X. Zhang et al., “Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis,” Science, vol. 313, pp. 1261–1266, 2006. View at Google Scholar
  79. C. M. McCallum, L. Comai, E. A. Greene, and S. Henikoff, “Targeting induced local lesions IN genomes (TILLING) for plant functional genomics,” Plant Physiology, vol. 123, no. 2, pp. 439–442, 2000. View at Google Scholar
  80. K. H. Lamour, L. Finley, O. Hurtado-Gonzales, D. Gobena, M. Tierney, and H. J. G. Meijer, “Targeted gene mutation in Phytophthora spp.,” Molecular Plant-Microbe Interactions, vol. 19, no. 12, pp. 1359–1367, 2006. View at Publisher · View at Google Scholar
  81. D. S. Lindsay, S. D. Lenz, R. A. Cole, J. P. Dubey, and B. L. Blagburn, “Mouse model for central nervous system Neospora caninum infections,” Journal of Parasitology, vol. 81, no. 2, pp. 313–315, 1995. View at Publisher · View at Google Scholar
  82. D. W. Meinke, “Molecular genetics of plant embryogenesis,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 46, pp. 369–394, 1995. View at Google Scholar
  83. E. J. Gilchrist and G. W. Haughn, “TILLING without a plough: a new method with applications for reverse genetics,” Current Opinion in Plant Biology, vol. 8, no. 2, pp. 211–215, 2005. View at Publisher · View at Google Scholar