Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 287814, 12 pages
http://dx.doi.org/10.1155/2012/287814
Review Article

The eIF4F and eIFiso4F Complexes of Plants: An Evolutionary Perspective

Department of Chemistry and Biochemistry and the Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA

Received 12 January 2012; Accepted 16 February 2012

Academic Editor: Thomas Preiss

Copyright © 2012 Ryan M. Patrick and Karen S. Browning. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Merrick, “Eukaryotic protein synthesis: still a mystery,” Journal of Biological Chemistry, vol. 285, no. 28, pp. 21197–21201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Jackson, C. U. T. Hellen, and T. V. Pestova, “The mechanism of eukaryotic translation initiation and principles of its regulation,” Nature Reviews Molecular Cell Biology, vol. 11, no. 2, pp. 113–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. E. Wells, P. E. Hillner, R. D. Vale, and A. B. Sachs, “Circularization of mRNA by eukaryotic translation initiation factors,” Molecular Cell, vol. 2, no. 1, pp. 135–140, 1998. View at Google Scholar · View at Scopus
  4. A. Yanagiya, Y. V. Svitkin, S. Shibata, S. Mikami, H. Imataka, and N. Sonenberg, “Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap,” Molecular and Cellular Biology, vol. 29, no. 6, pp. 1661–1669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Oberer, A. Marintchev, and G. Wagner, “Structural basis for the enhancement of eIF4A helicase activity by eIF4G,” Genes and Development, vol. 19, no. 18, pp. 2212–2223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Ozes, K. Feoktistova, B. C. Avanzino et al., “Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B,” Journal of Molecular Biology, vol. 412, no. 4, pp. 674–687, 2011. View at Google Scholar
  7. A. K. Lefebvre, N. L. Korneeva, M. Trutschl et al., “Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit,” Journal of Biological Chemistry, vol. 281, no. 32, pp. 22917–22932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. He, T. Von der Haar, C. R. Singh et al., “The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection,” Molecular and Cellular Biology, vol. 23, no. 15, pp. 5431–5445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Sonenberg and A. G. Hinnebusch, “Regulation of translation initiation in eukaryotes: mechanisms and biological targets,” Cell, vol. 136, no. 4, pp. 731–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Browning, “Plant translation initiation factors: it is not easy to be green,” Biochemical Society Transactions, vol. 32, no. 4, pp. 589–591, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Browning, “The plant translational apparatus,” Plant Molecular Biology, vol. 32, no. 1-2, pp. 107–144, 1996. View at Google Scholar · View at Scopus
  12. L. K. Mayberry, M. Leah Allen, M. D. Dennis, and K. S. Browning, “Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs,” Plant Physiology, vol. 150, no. 4, pp. 1844–1854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. K. Mayberry, M. L. Allen, K. R. Nitka et al., “Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding,” Journal of Biological Chemistry, vol. 286, no. 49, pp. 42566–42574, 2011. View at Google Scholar
  14. S. F. Altschul, J. C. Wootton, E. Zaslavsky, and Y. K. Yu, “The construction and use of log-odds substitution scores for multiple sequence alignment,” PLoS Computational Biology, vol. 6, no. 7, Article ID e1000852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. I. V. Grigoriev, H. Nordberg, I. Shabalov et al., “The genome portal of the department of energy joint genome institute,” Nucleic Acids Research, vol. 40, no. 1, pp. D26–D32, 2012. View at Google Scholar
  16. D. M. Goodstein, S. Shu, R. Howson et al., “Phytozome: a comparative platform for green plant genomics,” Nucleic Acids Research, vol. 40, no. 1, pp. D1178–D1186, 2012. View at Google Scholar
  17. A. Bombarely, N. Menda, I. Y. Tecle et al., “The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl,” Nucleic Acids Research, vol. 39, pp. D1149–D1155, 2011. View at Google Scholar
  18. V. Shulaev, D. J. Sargent, R. N. Crowhurst et al., “The genome of woodland strawberry (Fragaria vesca),” Nature Genetics, vol. 43, no. 2, pp. 109–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch, “ExPASy: the proteomics server for in-depth protein knowledge and analysis,” Nucleic Acids Research, vol. 31, no. 13, pp. 3784–3788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Katoh and H. Toh, “Recent developments in the MAFFT multiple sequence alignment program,” Briefings in Bioinformatics, vol. 9, no. 4, pp. 286–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. A. Ruud, C. Kuhlow, D. J. Goss, and K. S. Browning, “Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana,” Journal of Biological Chemistry, vol. 273, no. 17, pp. 10325–10330, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Moore, C. D. Bell, P. S. Soltis, and D. E. Soltis, “Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19363–19368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Marintchev, K. A. Edmonds, B. Marintcheva et al., “Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation,” Cell, vol. 136, no. 3, pp. 447–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Marintchev and G. Wagner, “eIF4G and CBP80 share a common origin and similar domain organization: implications for the structure and function of eIF4G,” Biochemistry, vol. 44, no. 37, pp. 12265–12272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. R. Gallie and K. S. Browning, “eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 36951–36960, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Robaglia and C. Caranta, “Translation initiation factors: a weak link in plant RNA virus infection,” Trends in Plant Science, vol. 11, no. 1, pp. 40–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. D. Lellis, M. L. Allen, A. W. Aertker et al., “Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability,” Plant Molecular Biology, vol. 74, no. 3, pp. 249–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Yoshii, M. Nishikiori, K. Tomita et al., “The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G,” Journal of Virology, vol. 78, no. 12, pp. 6102–6111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Metz and K. S. Browning, “Mutational analysis of the functional domains of the large subunit of the isozyme form of wheat initiation factor eIF4F,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31033–31036, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Cavalier-Smith, “Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree,” Biology Letters, vol. 6, no. 3, pp. 342–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Nicaise, J. L. Gallois, F. Chafiai et al., “Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana,” The FEBS Letters, vol. 581, no. 5, pp. 1041–1046, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Cheng and D. R. Gallie, “Competitive and noncompetitive binding of eIF4B, eIF4A, and the poly(A) binding protein to wheat translation initiation factor eIFiso4G,” Biochemistry, vol. 49, no. 38, pp. 8251–8265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Lax, W. Fritz, K. Browning, and J. Ravel, “Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5'-triphosphate inhibition of polypeptide synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 2, pp. 330–333, 1985. View at Google Scholar · View at Scopus