Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 310402, 8 pages
http://dx.doi.org/10.1155/2012/310402
Research Article

Comparative Analysis of SWIRM Domain-Containing Proteins in Plants

1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 51065, China
2Graduate University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
3Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON, Canada N5V 4T3
4Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan

Received 12 April 2012; Revised 16 June 2012; Accepted 24 June 2012

Academic Editor: Elena Pasyukova

Copyright © 2012 Yan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Ehrenhofer-Murray, “Chromatin dynamics at DNA replication, transcription and repair,” European Journal of Biochemistry, vol. 271, no. 12, pp. 2335–2349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Wu, “Chromatin remodeling and the control of gene expression,” The Journal of Biological Chemistry, vol. 272, no. 45, pp. 28171–28174, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Luger, “Structure and dynamic behavior of nucleosomes,” Current Opinion in Genetics and Development, vol. 13, no. 2, pp. 127–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. I. Lamond and W. C. Earnshaw, “Structure and function in the nucleus,” Science, vol. 280, no. 5363, pp. 547–553, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Muchardt and M. Yaniv, “ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job,” Journal of Molecular Biology, vol. 293, no. 2, pp. 187–198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zeng and M. M. Zhou, “Bromodomain: an acetyl-lysine binding domain,” FEBS Letters, vol. 513, no. 1, pp. 124–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mujtaba, L. Zeng, and M. M. Zhou, “Structure and acetyl-lysine recognition of the bromodomain,” Oncogene, vol. 26, no. 37, pp. 5521–5527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Akhtar, D. Zink, and P. B. Becker, “Chromodomains are protein-RNA interaction modules,” Nature, vol. 407, no. 6802, pp. 405–409, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Holdermann, N. H. Meyer, A. Round, K. Wild, M. Sattler, and I. Sinning, “Chromodomains read the arginine code of post-translational targeting,” Nature Structural and Molecular Biology, vol. 19, no. 2, pp. 260–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Aasland, A. F. Stewart, and T. Gibson, “The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB,” Trends in Biochemical Sciences, vol. 21, no. 3, pp. 87–88, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Boyer, M. R. Langer, K. A. Crowley, S. Tan, J. M. Denu, and C. L. Peterson, “Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes,” Molecular Cell, vol. 10, no. 4, pp. 935–942, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Aravind and L. M. Iyer, “The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities,” Genome Biology, vol. 3, no. 8, 2002. View at Google Scholar · View at Scopus
  13. M. Yoneyama, N. Tochio, T. Umehara et al., “Structural and functional differences of SWIRM domain subtypes,” Journal of Molecular Biology, vol. 369, no. 1, pp. 222–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Tochio, T. Umehara, S. Koshiba et al., “Solution structure of the SWIRM domain of human histone demethylase LSD1,” Structure, vol. 14, no. 3, pp. 457–468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Shi, F. Lan, C. Matson et al., “Histone demethylation mediated by the nuclear amine oxidase homolog LSD1,” Cell, vol. 119, no. 7, pp. 941–953, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Sterner, X. Wang, M. H. Bloom, G. M. Simon, and S. L. Berger, “The SANT domain of Ada2 is required for normal acetylation of histones by the yeast SAGA complex,” The Journal of Biological Chemistry, vol. 277, no. 10, pp. 8178–8186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. T. J. Sarnowski, G. Rios, J. Jásik et al., “SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development,” Plant Cell, vol. 17, no. 9, pp. 2454–2472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Saez, A. Rodrigues, J. Santiago, S. Rubio, and P. L. Rodriguez, “HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis,” Plant Cell, vol. 20, no. 11, pp. 2972–2988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. J. Sarnowski, S. Świezewski, K. Pawlikowska, S. Kaczanowski, and A. Jerzmanowski, “AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time,” Nucleic Acids Research, vol. 30, no. 15, pp. 3412–3421, 2002. View at Google Scholar · View at Scopus
  20. R. Archacki, T. J. Sarnowski, J. Halibart-Puzio et al., “Genetic analysis of functional redundancy of BRM ATPase and ATSWI3C subunits of Arabidopsis SWI/SNF chromatin remodelling complexes,” Planta, vol. 229, no. 6, pp. 1281–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Chou and C. H. Yang, “FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development,” Plant Journal, vol. 15, no. 2, pp. 231–242, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. He, S. D. Michaels, and R. M. Amasino, “Regulation of flowering time by histone acetylation in Arabidopsis,” Science, vol. 302, no. 5651, pp. 1751–1754, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. K. B. Nicholas, H. B. J. Nicholas Jr., and D. W. Deerfield II, “GeneDoc: analysis and visualization of genetic variation,” EMBnet.News, vol. 4, pp. 1–4, 1997. View at Google Scholar
  27. J. Ren, L. Wen, X. Gao, C. Jin, Y. Xue, and X. Yao, “DOG 1.0: illustrator of protein domain structures,” Cell Research, vol. 19, no. 2, pp. 271–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Marmorstein, G. P. Da, J. Lenkart, K. Zhao, R. Shiekhattar, and B. R. Cairns, “Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes,” The Faseb, vol. 20, no. 4, pp. A34–A35, 2006. View at Google Scholar
  29. A. M. Gamper, J. Kim, and R. G. Roeder, “The STAGA subunit ADA2b Is an important regulator of human GCN5 catalysis,” Molecular and Cellular Biology, vol. 29, no. 1, pp. 266–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. G. B. Legge, M. A. Martinez-Yamout, D. M. Hambly et al., “ZZ domain of CBP: an unusual zinc finger fold in a protein interaction module,” Journal of Molecular Biology, vol. 343, no. 4, pp. 1081–1093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. W. B. Hershey, K. Asano, T. Naranda, H. P. Vornlocher, P. Hanachi, and W. C. Merrick, “Conservation and diversity in the structure of translation initiation factor eIF3 from humans and yeast,” Biochimie, vol. 78, no. 11-12, pp. 903–907, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. G. P. Da, J. Lenkart, K. Zhao, R. Shiekhattar, B. R. Cairns, and R. Marmorstein, “Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2057–2062, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Jerzmanowski, “SWI/SNF chromatin remodeling and linker histones in plants,” Biochimica et Biophysica Acta, vol. 1769, no. 5-6, pp. 330–345, 2007. View at Publisher · View at Google Scholar · View at Scopus