Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 373768, 9 pages
http://dx.doi.org/10.1155/2012/373768
Review Article

Peanut (Arachis hypogaea) Expressed Sequence Tag Project: Progress and Application

1Department of Plant Pathology, University of Georgia, Tifton, GA, USA
2College of Bioscience and Biotechnology, Qiongzhou University, Sanya, China
3High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
4Henan Academy of Agricultural Sciences, Zhengzhou, China
5National Peanut Research Laboratory, USDA-ARS, Dawson, GA, USA
6Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA, USA
7Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, USA

Received 21 March 2012; Accepted 26 April 2012

Academic Editor: Jinfa Zhang

Copyright © 2012 Suping Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Doyle, “Leguminosae,” in Encyclopedia of Genetics, S. Brenner and J. H. Miller, Eds., pp. 1081–1085, Academic Press, San Diego, Calif, USA, 2001. View at Google Scholar
  2. B. Z. Guo, C. Y. Chen, Y. Chu, C. C. Holbrook, P. Ozias-Akins, and H. T. Stalker, “Advances in genetics and genomics for sustainable peanut production,” in Sustainable Agriculture and New Biotechnologies, N. Benkeblia, Ed., pp. 341–367, CRC Press, Boca Raton, Fla, USA, 2012. View at Google Scholar
  3. R. F. Wilson, H. T. Stalker, and E. C. Brummer, Legume Crop Genomics, AOCS Press, Champaign, Ill, USA, 2004.
  4. M. D. Adams, J. M. Kelley, J. D. Gocayne et al., “Complementary DNA sequencing: expressed sequence tags and human genome project,” Science, vol. 252, no. 5013, pp. 1651–1656, 1991. View at Google Scholar · View at Scopus
  5. M. Luo, P. Dang, B. Z. Guo et al., “Generation of expressed sequence tags (ESTS) for gene discovery and marker development in cultivated peanut,” Crop Science, vol. 45, no. 1, pp. 346–353, 2005. View at Google Scholar · View at Scopus
  6. K. Proite, S. C. M. Leal-Bertioli, D. J. Bertioli et al., “ESTs from a wild Arachis species for gene discovery and marker development,” BMC Plant Biology, vol. 7, article 7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Z. Guo, X. P. Chen, P. Dang et al., “Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection,” BMC Developmental Biology, vol. 8, article 12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Z. Guo, X. P. Chen, Y. B. Hong et al., “Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery,” International Journal of Plant Genomics, vol. 2009, Article ID 715605, 14 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Haegeman, J. Jacob, B. Vanholme, T. Kyndt, M. Mitreva, and G. Gheysen, “Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: the first transcriptome analysis of an Anguinid nematode,” Molecular and Biochemical Parasitology, vol. 167, no. 1, pp. 32–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. P. Bi, W. Liu, H. Xia et al., “EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.),” Genome, vol. 53, no. 10, pp. 832–839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Q. Song, M. J. Li, H. Xiao et al., “EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.),” Electronic Journal of Biotechnology, vol. 13, no. 3, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. V. Tirumalaraju, M. Jain, and M. Gallo, “Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization,” Journal of Plant Physiology, vol. 168, no. 5, pp. 481–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. C. Holbrook and A. K. Culbreath, “Registration of “Tifrunner” peanut,” Journal of Plant Registrations, vol. 1, article 124, 2007. View at Google Scholar
  14. D. M. T. Alves, R. W. Pereira, S. C. M. Leal-Bertioli, M. C. Moretzsohn, P. M. Guimarães, and D. J. Bertioli, “Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts (Arachis spp),” Genetics and Molecular Research, vol. 7, no. 3, pp. 631–642, 2008. View at Google Scholar · View at Scopus
  15. P. Koilkonda, S. Sato, S. Tabata et al., “Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp.,” Molecular Breeding, vol. 30, no. 1, pp. 125–138, 2012. View at Publisher · View at Google Scholar
  16. Y. S. Yan, X. D. Lin, Y. S. Zhang, L. Wang, K. Wu, and S. Z. Huang, “Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags,” Plant Science, vol. 169, no. 2, pp. 439–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Wang, Y. S. Yan, B. Liao, X. D. Lin, and S. Z. Huang, “The cDNA cloning of conarachin gene and its expression in developing peanut seeds,” Journal of Plant Physiology and Molecular Biology, vol. 31, no. 1, pp. 107–110, 2005. View at Google Scholar · View at Scopus
  18. X. J. Wang, L. Su, X. Q. Quan, L. Shan, H. T. Zhang, and Y. P. Bi, “Peanut (Arachis hypogaea L.) EST sequencing, gene cloning and Agrobacteria-mediated transformation,” in Proceedings of the International Groundnut Conference on Groundnut Aflatoxin and Genomics, pp. 59–60, Guangzhou, China, November, 2006.
  19. J. Y. Wang, L. J. Pan, Q. L. Yang, and S. L. Yu, “Development and characterization of EST-SSR makers from NCBI and cDNA library in cultivated peanut (Arachis hypogaea L.),” Molecular Plant Breeding, vol. 7, no. 4, pp. 806–810, 2009. View at Google Scholar
  20. J. Y. Wang, L. J. Pan, Q. L. Yang, and S. L. Yu, “Development and characterization of EST-SSR markers from NCBI and cDNA library in cultivated peanut (Arachis hypogaea L.),” Legume Genomics and Genetics, vol. 1, no. 6, pp. 30–33, 2010. View at Google Scholar
  21. J. Q. Huang, L. Y. Yan, Y. Lei, H. F. Jiang, and B. S. Liao, “Peanut cDNA library construction and EST sequence analysis,” Chinese Journal of Oil Crop Sciences, vol. 10, pp. 121–125, 2008. View at Google Scholar
  22. Y. Xiao, B. S. Liao, L. Y. Yan et al., “Development and utilization of EST-SSR primers in peanut(Arachis hypogaea L.),” Hubei Agricultural Sciences, vol. 49, no. 11, pp. 2625–2628, 2010. View at Google Scholar
  23. M. J. Li, H. Xia, C. Z. Zhao et al., “Isolation and characterization of putative Acetyl-CoA carboxylases in Arachis hypogaea L.,” Plant Molecular Biology Reporter, vol. 28, no. 1, pp. 58–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Li, A. Q. Li, H. Xia et al., “Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.,” Journal of Biosciences, vol. 34, no. 2, pp. 227–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Li, X. J. Wang, L. Su, Y. P. Bi, and S. B. Wan, “Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L.,” Plant Molecular Biology Reporter, vol. 28, no. 3, pp. 365–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. P. Siloto, K. Findlay, A. Lopez-Villalobos, E. C. Yeung, C. L. Nykiforuk, and M. M. Moloney, “The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis,” Plant Cell, vol. 18, no. 8, pp. 1961–1974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. X. J. Wang, H. Xia, C. S. Li, C. Z. Zhao, and A. Q. Li, Peanut Allergens: Gene Cloning and RNAi Interference. Sino-Dutch Symposium on Multedisciplinary Allergy Research, Hangzhou, China.
  28. L. Su, C. Z. Zhao, Y. P. Bi, S. B. Wan, H. Xia, and X. J. Wang, “Cloning and expression analysis of peanut LEA protein genes,” Journal of Biosciences, vol. 36, no. 2, pp. 223–228, 2011. View at Google Scholar
  29. F. X. Shao, Z. J. Liu, L. Q. Wei, M. Cao, and Y. P. Bi, “Cloning and sequence analysis of a novel NAC-like gene AhNAC1 in Peanut (Arachis hypogaea),” Acta Botanica Boreali-Occidentalia Sinica, vol. 10, pp. 1929–1934, 2008. View at Google Scholar
  30. M. Zhang, W. Liu, Y. P. Bi, and Z. Z. Wang, “Isolation and identification of PNDREB1: a new DREB transcription factor from peanut (Arachis hypogaea L.),” Acta Agronomica Sinica, vol. 35, no. 11, pp. 1973–1980, 2009. View at Google Scholar
  31. G. L. Zhang, X. G. Shi, N. B. Cai, Y. L. Zhao, and W. J. Zhuang, “Molecular cloning and expression of pericarp and testaspecific expression gene AhPSG13,” Chinese Journal of Oil Crop Sciences, vol. 32, no. 1, pp. 035–040, 2010. View at Google Scholar
  32. W. F. Li, H. Y. Liu, N. Zhong, and X. Q. Liang, “Cloning and prokaryotic expression of defensin gene from peanut (Arachis hypogaea L.),” Genomics and Applied Biology, vol. 28, no. 4, pp. 645–650, 2009. View at Google Scholar
  33. C. Z. Xie, X. Q. Liang, L. Li, and H. Y. Liu, “Cloning and prokaryotic expression of AhPR10 gene with resistance to aspergillus flavus in peanut,” Genomics and Applied Biology, vol. 28, no. 2, pp. 237–244, 2009. View at Google Scholar
  34. C. Z. Zhao, A. Q. Li, X. J. Wang, H. Xia, L. Su, and C. S. Li, “Cloning and expression analysis of lipid transfer protein family genes in Arachis hypogaea L.,” Journal of Peanut Science, vol. 38, no. 4, pp. 15–20, 2009. View at Google Scholar
  35. M. Luo, P. Dang, M. G. Bausher et al., “Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea),” Phytopathology, vol. 95, no. 4, pp. 381–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Luo, X. Liang, P. Dang et al., “Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress,” Plant Science, vol. 169, no. 4, pp. 695–703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Payton, K. R. Kottapalli, D. Rowland et al., “Gene expression profiling in peanut using high density oligonucleotide microarrays,” BMC Genomics, vol. 10, article 265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Z. Guo, N. D. Fedorova, X. P. Chen et al., “Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies,” Toxins, vol. 3, no. 7, pp. 737–753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. W. J. Zhuang, H. Chen, P. K. Nancy et al., “Isolation and characterization of important genes toward improvement peanut resistance to Aspergillus flavus,” in Proceedings of the 5th International Conference of the Peanut Research Community on Advances in Arachis Through Genomics and Biotechnology, p. 28, Brasillia, Brazil, June, 2011.
  40. X. Q. Liang, X. P. Chen, Y. B. Hong et al., “Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species,” BMC Plant Biology, vol. 9, article 35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Qin, S. Feng, C. Chen et al., “An Integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations,” Theoretical and Applied Genetics, vol. 124, pp. 653–664, 2012. View at Google Scholar
  42. X. Q. Liang, Y. B. Hong, X. P. Chen et al., “Characterization and application of EST-SSRs in peanut (Arachis hypogaea L.),” Acta Agronomica Sinica, vol. 35, no. 2, pp. 246–254, 2009. View at Google Scholar
  43. T. Thiel, W. Michalek, R. K. Varshney, and A. Graner, “Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.),” Theoretical and Applied Genetics, vol. 106, no. 3, pp. 411–422, 2003. View at Google Scholar · View at Scopus
  44. C. Liewlaksaneeyanawin, C. E. Ritland, Y. A. El-Kassaby, and K. Ritland, “Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs,” Theoretical and Applied Genetics, vol. 109, no. 2, pp. 361–369, 2004. View at Google Scholar · View at Scopus
  45. R. K. Varshney, R. Sigmund, A. Börner et al., “Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice,” Plant Science, vol. 168, no. 1, pp. 195–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. P. Feng, W. G. Li, H. S. Huang, J. Y. Wang, and Y. T. Wu, “Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis),” Molecular Breeding, vol. 23, no. 1, pp. 85–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. B. S. Bushman, S. R. Larson, M. Tuna et al., “Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability,” Theoretical and Applied Genetics, vol. 123, no. 1, pp. 119–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Choudhary, N. K. Sethy, B. Shokeen, and S. Bhatia, “Development of chickpea EST-SSR markers and analysis of allelic variation across related species,” Theoretical and Applied Genetics, vol. 118, no. 3, pp. 591–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Koppolu, H. D. Upadhyaya, S. L. Dwivedi, D. A. Hoisington, and R. K. Varshney, “Genetic relationships among seven sections of genus Arachis studied by using SSR markers,” BMC Plant Biology, vol. 10, article 15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. E. S. Mace, R. K. Varshney, V. Mahalakshmi et al., “In silico development of simple sequence repeat markers within the aeschynomenoid/dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea, groundnut,” Plant Science, vol. 174, no. 1, pp. 51–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R. K. Varshney, D. J. Bertioli, M. C. Moretzsohn et al., “The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.),” Theoretical and Applied Genetics, vol. 118, no. 4, pp. 729–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. C. Moretzsohn, L. Leoi, K. Proite et al., “A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae),” Theoretical and Applied Genetics, vol. 111, no. 6, pp. 1060–1071, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. C. Moretzsohn, A. V. G. Barbosa, D. M. T. Alves-Freitas et al., “A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome,” BMC Plant Biology, vol. 9, article 40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Foncéka, T. Hodo-Abalo, R. Rivallan et al., “Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid,” BMC Plant Biology, vol. 9, article 103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. S. C. M. Leal-Bertioli, A. C. V. F. José, D. M. T. Alves-Freitas et al., “Identification of candidate genome regions controlling disease resistance in Arachis,” BMC Plant Biology, vol. 9, article 112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Ravi, V. Vadez, S. Isobe et al., “Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.),” Theoretical and Applied Genetics, vol. 122, no. 6, pp. 1119–1132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. B. Hong, X. P. Chen, X. Q. Liang et al., “A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome,” BMC Plant Biology, vol. 10, article 17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Mondal, A. M. Badigannavar, and S. F. D’Souza, “Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii,” Molecular Breeding, vol. 29, no. 2, pp. 467–476, 2012. View at Publisher · View at Google Scholar
  59. D. A. Knauft and D. W. Gorbet, “SunOleic 97R,” Florida Agricultural Experiment Stations Circular, vol. 400, pp. 1–7, 1997. View at Google Scholar
  60. D. W. Gorbet and D. A. Knauft, “Registration of “SunOleic 95R” peanut,” Crop Science, vol. 4, article 1932, 1997. View at Google Scholar
  61. A. J. Norden, D. W. Gorbet, and D. A. Knauft, “Registration of “Sunrunner” peanut,” Crop Science, vol. 25, article 1126, 1985. View at Google Scholar
  62. A. K. Culbreath, D. W. Gorbet, N. Martinez-Ochoa et al., “High levels of field resistance to tomato spotted wilt virus in peanut breeding lines derived from hypogaea and hirsuta botanical varieties,” Peanut Science, vol. 32, pp. 20–24, 2005. View at Google Scholar
  63. Y. Chu, L. Ramos, C. C. Holbrook, and P. Ozias-Akins, “Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection,” Crop Science, vol. 47, no. 6, pp. 2372–2378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Chu, C. C. Holbrook, and P. Ozias-Akins, “Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut,” Crop Science, vol. 49, no. 6, pp. 2029–2036, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Kochert, T. Halward, W. D. Branch, and C. E. Simpson, “RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species,” Theoretical and Applied Genetics, vol. 81, no. 5, pp. 565–570, 1991. View at Publisher · View at Google Scholar · View at Scopus
  66. G. He and C. Prakash, “Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers,” Genetic Resources and Crop Evolution, vol. 48, no. 4, pp. 347–352, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Halward, H. T. Stalker, and G. Kochert, “Development of an RFLP linkage map in diploid peanut species,” Theoretical and Applied Genetics, vol. 87, no. 3, pp. 379–384, 1993. View at Google Scholar · View at Scopus
  68. M. D. Burow, C. E. Simpson, J. L. Starr, and A. H. Paterson, “Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species,” Genetics, vol. 159, no. 2, pp. 823–837, 2001. View at Google Scholar · View at Scopus
  69. H. T. Stalker and J. P. Moss, “Speciation, Cytogenetics, and Utilization of Arachis Species,” Advances in Agronomy, vol. 41, no. C, pp. 1–40, 1987. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Kochert, H. T. Stalker, M. Gimenes, L. Galgaro, C. R. Lopes, and K. Moore, “RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae),” American Journal of Botany, vol. 83, no. 10, pp. 1282–1291, 1996. View at Google Scholar · View at Scopus
  71. N. D. Young, N. F. Weeden, and G. Kochert, “Genome mapping in legumes (Fam. Fabaceae),” in Genome Mapping in Plants, A. H. Paterson, Ed., pp. 211–227, Landes Bioscience Press, Austin, Tex, USA, 1996. View at Google Scholar
  72. S. A. Goff, D. Ricke, T. H. Lan et al., “A draft sequence of the rice genome (Oryza sativa L. ssp. japonica),” Science, vol. 296, no. 5565, pp. 92–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Yu, S. Hu, J. Wang, G. K. Wong, S. Li, B. Liu et al., “A draft sequence of the rice genome (Oryza sativa L. ssp. indica),” Science, vol. 296, no. 5565, pp. 79–92, 2002. View at Google Scholar
  74. A. G. Tian, J. Wang, P. Cui et al., “Characterization of soybean genomic features by analysis of its expressed sequence tags,” Theoretical and Applied Genetics, vol. 108, no. 5, pp. 903–913, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Thudi, Y. Li, S. A. Jackson, G. D. May, and R. K. Varshney, “Current state-of-art of sequencing technologies for plant genomics research,” Briefings in Functional Genomics, vol. 11, pp. 3–11, 2012. View at Google Scholar
  76. L. D. Hillier, G. Lennon, M. Becker et al., “Generation and analysis of 280,000 human expressed sequence tags,” Genome Research, vol. 6, no. 9, pp. 807–828, 1996. View at Google Scholar · View at Scopus
  77. M. Seki, M. Narusaka, A. Kamiya et al., “Functional annotation of a full-length Arabidopsis cDNA collection,” Science, vol. 296, no. 5565, pp. 141–145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. M. R. Brent, “Steady progress and recent breakthroughs in the accuracy of automated genome annotation,” Nature Reviews Genetics, vol. 9, no. 1, pp. 62–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Z. Zhao, X. J. Wang, A. Q. Li, and C. S. Li, “De novo characterization of peanut transcriptome during gynophore development,” in Proceedings of the 5th International Conference of the Peanut Research Community on Advances in Arachis Through Genomics and Biotechnology, p. 48, Brasillia, Brazil, June, 2011.
  80. S. J. Emrich, W. B. Barbazuk, L. Li, and P. S. Schnable, “Gene discovery and annotation using LCM-454 transcriptome sequencing,” Genome Research, vol. 17, no. 1, pp. 69–73, 2007. View at Publisher · View at Google Scholar · View at Scopus