Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012 (2012), Article ID 376706, 10 pages
http://dx.doi.org/10.1155/2012/376706
Research Article

Empirical Bayes Model Comparisons for Differential Methylation Analysis

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40292, USA
3Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
4Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
5Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
6Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
7Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
8Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received 26 March 2012; Revised 15 June 2012; Accepted 29 June 2012

Academic Editor: G. Pesole

Copyright © 2012 Mingxiang Teng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Mockler and J. R. Ecker, “Applications of DNA tiling arrays for whole-genome analysis,” Genomics, vol. 85, no. 1, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. X. S. Liu, “Getting started in tiling microarray analysis,” PLoS Computational Biology, vol. 3, no. 10, pp. 1842–1844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yazaki, B. D. Gregory, and J. R. Ecker, “Mapping the genome landscape using tiling array technology,” Current Opinion in Plant Biology, vol. 10, no. 5, pp. 534–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. V. Gendrel, Z. Lippman, R. Martienssen, and V. Colot, “Profiling histone modification patterns in plants using genomic tiling microarrays,” Nature Methods, vol. 2, no. 3, pp. 213–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhang, J. Yazaki, A. Sundaresan et al., “Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis,” Cell, vol. 126, no. 6, pp. 1189–1201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Weber, I. Hellmann, M. B. Stadler et al., “Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome,” Nature Genetics, vol. 39, no. 4, pp. 457–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. Euskirchen, J. S. Rozowsky, C. L. Wei et al., “Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies,” Genome Research, vol. 17, no. 6, pp. 898–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Balch, P. Yan, T. Craft et al., “Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer,” Molecular Cancer Therapeutics, vol. 4, no. 10, pp. 1505–1514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Fan, P. S. Yan, C. Hartman-Frey et al., “Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant,” Cancer Research, vol. 66, no. 24, pp. 11954–11966, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Newton, C. M. Kendziorski, C. S. Richmond, F. R. Blattner, and K. W. Tsui, “On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data,” Journal of Computational Biology, vol. 8, no. 1, pp. 37–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Parmigiani, E. S. Garrett, R. Anbazhagan, and E. Gabrielson, “A statistical framework for expression-based molecular classification in cancer,” Journal of the Royal Statistical Society. Series B, vol. 64, no. 4, pp. 717–736, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Efron, “Large-scale simultaneous hypothesis testing: the choice of a null hypothesis,” Journal of the American Statistical Association, vol. 99, no. 465, pp. 96–104, 2004. View at Google Scholar · View at Scopus
  13. G. K. Smyth, “Linear models and empirical bayes methods for assessing differential expression in microarray experiments,” Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, article 3, 2004. View at Google Scholar · View at Scopus
  14. W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in microarray expression data using empirical Bayes methods,” Biostatistics, vol. 8, no. 1, pp. 118–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Efron, “Microarrays, empirical bayes and the two-groups model,” Statistical Science, vol. 23, no. 1, pp. 1–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Lo and R. Gottardo, “Flexible empirical Bayes models for differential gene expression,” Bioinformatics, vol. 23, no. 3, pp. 328–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Keleş, “Mixture modeling for genome-wide localization of transcription factors,” Biometrics, vol. 63, no. 1, pp. 10–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Gottardo, W. Li, W. E. Johnson, and X. S. Liu, “A flexible and powerful Bayesian hierarchical model for ChIP-chip experiments,” Biometrics, vol. 64, no. 2, pp. 468–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Jeong, L. Li, Y. Liu, K. P. Nephew, T. H. M. Huang, and C. Shen, “An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer,” BMC Medical Genomics, vol. 3, article 55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Aryee, Z. Wu, C. Ladd-Acosta et al., “Accurate genome-scale percentage DNA methylation estimates from microarray data,” Biostatistics, vol. 12, no. 2, pp. 197–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Li, H. Shi, C. Yiannoutsos, T. H. M. Huang, and K. P. Nephew, “Epigenetic hypothesis tests for methylation and acetylation in a triple microarray system,” Journal of Computational Biology, vol. 12, no. 3, pp. 370–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Khalili, D. Potter, P. Yan et al., “Gamma-normal-gamma mixture model for detecting differentially methylated loci in three breast cancer cell lines,” Cancer Informatics, vol. 3, pp. 43–54, 2007. View at Google Scholar · View at Scopus
  23. L. Goh, S. K. Murphy, S. Muhkerjee, and T. S. Furey, “Genomic sweeping for hypermethylated genes,” Bioinformatics, vol. 23, no. 3, pp. 281–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Keshet, Y. Schlesinger, S. Farkash et al., “Evidence for an instructive mechanism of de novo methylation in cancer cells,” Nature Genetics, vol. 38, no. 2, pp. 149–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Bock, M. Paulsen, S. Tierling, T. Mikeska, T. Lengauer, and J. Walter, “CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure,” PLoS genetics, vol. 2, no. 3, article e26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Bock, J. Walter, M. Paulsen, and T. Lengauer, “CpG island mapping by epigenome prediction,” PLoS Computational Biology, vol. 3, no. 6, article e110, pp. 1055–1070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Das, N. Dimitrova, Z. Xuan et al., “Computational prediction of methylation status in human genomic sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10713–10716, 2006. View at Publisher · View at Google Scholar
  28. F. Fang, S. Fan, X. Zhang, and M. Q. Zhang, “Predicting methylation status of CpG islands in the human brain,” Bioinformatics, vol. 22, no. 18, pp. 2204–2209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Li, H. I. H. Paik, C. Balch et al., “Enriched transcription factor binding sites in hypermethylated gene promoters in drug resistant cancer cells,” Bioinformatics, vol. 24, no. 16, pp. 1745–1748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Teng et al., “The influence of cis-regulatory elements on DNA methylation fidelity,” PLoS One, vol. 7, no. 3, Article ID e32928, 2012. View at Publisher · View at Google Scholar
  31. S. H. Wei et al., “Prognostic DNA methylation biomarkers in ovarian cancer,” Clinical Cancer Research, vol. 12, no. 9, pp. 2788–2794, 2006. View at Publisher · View at Google Scholar
  32. P. S. Yan, S. H. Wei, and T. H. Huang, “Differential methylation hybridization using CpG island arrays,” Methods in Molecular Biology, vol. 200, pp. 87–100, 2002. View at Google Scholar · View at Scopus
  33. P. S. Yan et al., “Applications of CpG island microarrays for high-throughput analysis of DNA methylation,” Journal of Nutrition, vol. 132, supplement, no. 8, pp. 2430S–2434S, 2002. View at Google Scholar
  34. Y. H. Yang, S. Dudoit, P. Luu et al., “Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation,” Nucleic acids research, vol. 30, no. 4, article e15, 2002. View at Google Scholar · View at Scopus
  35. C. M. Kendziorski, M. A. Newton, H. Lan, and M. N. Gould, “On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles,” Statistics in Medicine, vol. 22, no. 24, pp. 3899–3914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. Jones and G. Liang, “Rethinking how DNA methylation patterns are maintained,” Nature Reviews Genetics, vol. 10, no. 11, pp. 805–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. D. Riggs and Z. Xiong, “Methylation and epigenetic fidelity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 4–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. X. Chen and A. D. Riggs, “Maintenance and regulation of DNA methylation patterns in mammals,” Biochemistry and Cell Biology, vol. 83, no. 4, pp. 438–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. E. Kel, E. Gößling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis, and E. Wingender, “MATCH: a tool for searching transcription factor binding sites in DNA sequences,” Nucleic Acids Research, vol. 31, no. 13, pp. 3576–3579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Strassburger and F. Bretz, “Compatible simultaneous lower confidence bounds for the Holm procedure and other Bonferroni-based closed tests,” Statistics in Medicine, vol. 27, no. 24, pp. 4914–4927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Li, C. Balch, J. S. Montgomery et al., “Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer,” BMC Medical Genomics, vol. 2, article 34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. D. M. Murphy, P. G. Buckley, K. Bryan et al., “Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation,” PLoS ONE, vol. 4, no. 12, Article ID e8154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Gebhard, C. Benner, M. Ehrich et al., “General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells,” Cancer Research, vol. 70, no. 4, pp. 1398–1407, 2010. View at Publisher · View at Google Scholar · View at Scopus