Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012 (2012), Article ID 406357, 8 pages
http://dx.doi.org/10.1155/2012/406357
Review Article

Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes?

1Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, 28049 Madrid, Spain
2Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain

Received 23 December 2011; Accepted 8 February 2012

Academic Editor: Greco Hernández

Copyright © 2012 Alfonso Muñoz and M. Mar Castellano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Holcik and N. Sonenberg, “Translational control in stress and apoptosis,” Nature Reviews Molecular Cell Biology, vol. 6, no. 4, pp. 318–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. E. Graber and M. Holcik, “Cap-independent regulation of gene expression in apoptosis,” Molecular BioSystems, vol. 3, no. 12, pp. 825–834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Al-Fageeh and C. M. Smales, “Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems,” Biochemical Journal, vol. 397, no. 2, pp. 247–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Sun, C. S. Conn, Y. Han, V. Yeung, and S.-B. Qian, “PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation,” Journal of Biological Chemistry, vol. 286, no. 8, pp. 6791–6800, 2011. View at Publisher · View at Google Scholar
  5. L. M. Castelli, J. Lui, S. G. Campbell et al., “Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated,” Molecular Biology of the Cell, vol. 22, no. 18, pp. 3379–3393, 2011. View at Publisher · View at Google Scholar
  6. W. V. Gilbert, K. Zhou, T. K. Butler, and J. A. Doudna, “Cap-independent translation is required for starvation-induced differentiation in yeast,” Science, vol. 317, no. 5842, pp. 1224–1227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Liu and M. C. Simon, “Regulation of transcription and translation by hypoxia,” Cancer Biology and Therapy, vol. 3, no. 6, pp. 492–497, 2004. View at Google Scholar · View at Scopus
  8. S. Braunstein, K. Karpisheva, C. Pola et al., “A Hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer,” Molecular Cell, vol. 28, no. 3, pp. 501–512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Floris, H. Mahgoub, E. Lanet, C. Robaglia, and B. Menand, “Post-transcriptional regulation of gene expression in plants during abiotic stress,” International Journal of Molecular Sciences, vol. 10, no. 7, pp. 3168–3185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Branco-Price, K. A. Kaiser, C. J. H. Jang, C. K. Larive, and J. Bailey-Serres, “Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana,” Plant Journal, vol. 56, no. 5, pp. 743–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Dhaubhadel, K. S. Browning, D. R. Gallie, and P. Krishna, “Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress,” Plant Journal, vol. 29, no. 6, pp. 681–691, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Sormani, E. Delannoy, S. Lageix et al., “Sublethal cadmium intoxication in Arabidopsis thaliana impacts translation at multiple levels,” Plant and Cell Physiology, vol. 52, no. 2, pp. 436–447, 2011. View at Publisher · View at Google Scholar
  13. M. Nicolaï, M. A. Roncato, A. S. Canoy et al., “Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control,” Plant Physiology, vol. 141, no. 2, pp. 663–673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Matsuura, U. Kiyotaka, Y. Ishibashi et al., “A short period of mannitol stress but not LiCl stress led to global translational repression in plants,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 10, pp. 2110–2112, 2010. View at Publisher · View at Google Scholar
  15. R. J. Jackson, C. U. T. Hellen, and T. V. Pestova, “The mechanism of eukaryotic translation initiation and principles of its regulation,” Nature Reviews Molecular Cell Biology, vol. 11, no. 2, pp. 113–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. C. Wek, H. Y. Jiang, and T. G. Anthony, “Coping with stress: EIF2 kinases and translational control,” Biochemical Society Transactions, vol. 34, no. 1, pp. 7–11, 2006. View at Google Scholar · View at Scopus
  17. M. J. Clemens, “Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis,” Progress in Molecular and Subcellular Biology, vol. 27, pp. 57–89, 2001. View at Google Scholar · View at Scopus
  18. M. J. Clemens, “Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins,” Journal of Cellular and Molecular Medicine, vol. 5, no. 3, pp. 221–239, 2001. View at Google Scholar · View at Scopus
  19. P. Zhang, B. C. McGrath, J. Reinert et al., “The GCN2 eIF2α kinase is required for adaptation to amino acid deprivation in mice,” Molecular and Cellular Biology, vol. 22, no. 19, pp. 6681–6688, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. H. P. Harding, M. Calfon, F. Urano, I. Novoa, and D. Ron, “Transcriptional and translational control in the mammalian unfolded protein response,” Annual Review of Cell and Developmental Biology, vol. 18, pp. 575–599, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Clemens, “PKR—a protein kinase regulated by double-stranded RNA,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 7, pp. 945–949, 1997. View at Google Scholar
  22. J. J. Chen, “Regulation of protein synthesis by the heme-regulated eIF2α kinase: relevance to anemias,” Blood, vol. 109, no. 7, pp. 2693–2699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Zhan, J. Narasimhan, and R. C. Wek, “Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe,” Genetics, vol. 168, no. 4, pp. 1867–1875, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Lageix, E. Lanet, M. N. Pouch-Pélissier et al., “Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding,” BMC Plant Biology, vol. 8, article no. 134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Zhang, Y. Wang, K. Kanyuka, M. A. J. Parry, S. J. Powers, and N. G. Halford, “GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis,” Journal of Experimental Botany, vol. 59, no. 11, pp. 3131–3141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. J. Hiddinga, C. J. Crum, Jie Hu, and D. A. Roth, “Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase,” Science, vol. 241, no. 4864, pp. 451–453, 1988. View at Google Scholar · View at Scopus
  27. J. O. Langland, L. A. Langland, K. S. Browning, and D. A. Roth, “Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4539–4544, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. J. O. Langland, Jin Song, B. L. Jacobs, and D. A. Roth, “Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase,” Plant Physiology, vol. 108, no. 3, pp. 1259–1267, 1995. View at Google Scholar · View at Scopus
  29. C. J. Crum, J. Hu, H. J. Hiddinga, and D. A. Roth, “Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity,” Journal of Biological Chemistry, vol. 263, no. 26, pp. 13440–13443, 1988. View at Google Scholar · View at Scopus
  30. D. R. Gallie, H. Le, C. Caldwell, R. L. Tanguay, N. X. Hoang, and K. S. Browning, “The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat,” Journal of Biological Chemistry, vol. 272, no. 2, pp. 1046–1053, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Altmann, N. Schmitz, C. Berset, and H. Trachsel, “A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E,” EMBO Journal, vol. 16, no. 5, pp. 1114–1121, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. G. P. Cosentino, T. Schmelzle, A. Haghighat, S. B. Helliwell, M. N. Hall, and N. Sonenberg, “Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4604–4613, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. E. S. Mardanova, L. A. Zamchuk, M. V. Skulachev, and N. V. Ravin, “The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site,” Gene, vol. 420, no. 1, pp. 11–16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. T. D. Dinkova, H. Zepeda, E. Martínez-Salas, L. M. Martínez, J. Nieto-Sotelo, and E. Sánchez De Jiménez, “Cap-independent translation of maize Hsp101,” Plant Journal, vol. 41, no. 5, pp. 722–731, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. E. L. P. Kneller, A. M. Rakotondrafara, and W. A. Miller, “Cap-independent translation of plant viral RNAs,” Virus Research, vol. 119, no. 1, pp. 63–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Deprost, L. Yao, R. Sormani et al., “The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation,” EMBO Reports, vol. 8, no. 9, pp. 864–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Freire, “Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex,” Gene, vol. 345, no. 2, pp. 271–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Freire, C. Tourneur, F. Granier et al., “Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein,” Plant Molecular Biology, vol. 44, no. 2, pp. 129–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Montero-Lomelí, B. L. B. Morais, D. L. Figueiredo, D. C. S. Neto, J. R. P. Martins, and C. A. Masuda, “The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21542–21548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Sanan-Mishra, X. H. Pham, S. K. Sopory, and N. Tuteja, “Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 2, pp. 509–514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. G. Hinnebusch, “Translational regulation of GCN4 and the general amino acid control of yeast,” Annual Review of Microbiology, vol. 59, pp. 407–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. P. Harding, I. Novoa, Y. Zhang et al., “Regulated translation initiation controls stress-induced gene expression in mammalian cells,” Molecular Cell, vol. 6, no. 5, pp. 1099–1108, 2000. View at Google Scholar · View at Scopus
  43. J. Pelletier and N. Sonenberg, “Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA,” Nature, vol. 334, no. 6180, pp. 320–325, 1988. View at Google Scholar · View at Scopus
  44. J. Pelletier, G. Kaplan, V. R. Racaniello, and N. Sonenberg, “Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region,” Molecular and Cellular Biology, vol. 8, no. 3, pp. 1103–1112, 1988. View at Google Scholar · View at Scopus
  45. S. K. Jang, H. G. Krausslich, M. J. H. Nicklin, G. M. Duke, A. C. Palmenberg, and E. Wimmer, “A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation,” Journal of Virology, vol. 62, no. 8, pp. 2636–2643, 1988. View at Google Scholar · View at Scopus
  46. K. A. Spriggs, M. Stoneley, M. Bushell, and A. E. Willis, “Re-programming of translation following cell stress allows IRES-mediated translation to predominate,” Biology of the Cell, vol. 100, no. 1, pp. 27–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Komar and M. Hatzoglou, “Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states,” Cell Cycle, vol. 10, no. 2, pp. 229–240, 2011. View at Publisher · View at Google Scholar
  48. R. Vanderhaeghen, R. De Clercq, M. Karimi, M. Van Montagu, P. Hilson, and M. Van Lijsebettens, “Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation,” FEBS Letters, vol. 580, no. 11, pp. 2630–2636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. I. N. Shatsky, S. E. Dmitriev, I. M. Terenin, and D. E. Andreev, “Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs,” Molecules and Cells, vol. 30, no. 4, pp. 285–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. W. V. Gilbert, “Alternative ways to think about cellular internal ribosome entry,” Journal of Biological Chemistry, vol. 285, no. 38, pp. 29033–29038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. W. A. Miller, Z. Wang, and K. Treder, “The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs,” Biochemical Society Transactions, vol. 35, no. 6, pp. 1629–1633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. D. Kulkarni, B. Muralidharan, A. C. Panda, B. Bakthavachalu, A. Vindu, and V. Seshadri, “Glucose-stimulated translation regulation of insulin by the 5′ UTR-binding proteins,” Journal of Biological Chemistry, vol. 286, no. 16, pp. 14146–14156, 2011. View at Publisher · View at Google Scholar
  53. D. A. Zelenina, O. I. Kulaeva, E. V. Smirnyagina et al., “Translation enhancing properties of the 5'-leader of potato virus X genomic RNA,” FEBS Letters, vol. 296, no. 3, pp. 267–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Neeleman, R. C. L. Olsthoorn, H. J. M. Linthorst, and J. F. Bol, “Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14286–14291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. D. R. Gallie, “The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of elF4F,” Nucleic Acids Research, vol. 30, no. 15, pp. 3401–3411, 2002. View at Google Scholar · View at Scopus
  56. D. R. Gallie and V. Walbot, “Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation,” Nucleic Acids Research, vol. 20, no. 17, pp. 4631–4638, 1992. View at Google Scholar · View at Scopus
  57. R. Kawaguchi and J. Bailey-Serres, “mRNA sequence features that contribute to translational regulation in Arabidopsis,” Nucleic Acids Research, vol. 33, no. 3, pp. 955–965, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. L. K. Mayberry, M. L. Allen, K. R. Nitka, L. Campbell, P. A. Murphy, and K. S. Browning, “Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding,” Journal of Biological Chemistry, vol. 286, no. 49, pp. 42566–42574, 2011. View at Publisher · View at Google Scholar
  59. D. R. Gallie and K. S. Browning, “eIF4G Functionally Differs from eIFiso4G in Promoting Internal Initiation, Cap-independent Translation, and Translation of Structured mRNAs,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 36951–36960, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. L. K. Mayberry, M. Leah Allen, M. D. Dennis, and K. S. Browning, “Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs,” Plant Physiology, vol. 150, no. 4, pp. 1844–1854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. D. Lellis, M. L. Allen, A. W. Aertker et al., “Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability,” Plant Molecular Biology, vol. 74, no. 3, pp. 249–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. D. Dinkova, “Tight translational control by the initiation factors eIF4E and eIF(iso)4E is required for maize seed germination,” Seed Science Research, vol. 21, no. 2, pp. 85–93, 2011. View at Publisher · View at Google Scholar