Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 628204, 14 pages
http://dx.doi.org/10.1155/2012/628204
Research Article

Screen for Footprints of Selection during Domestication/Captive Breeding of Atlantic Salmon

1Division of Genetics and Physiology, Department of Biology, University of Turku, 20014 Turku, Finland
2Department of Aquaculture, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, 51014 Tartu, Estonia
3Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
4Aquaculture and Fisheries Development Centre, School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
5Marine Institute, Furnace, Newport, Co. Mayo, Ireland
6Population Ecology Division, Department of Fisheries and Oceans, Bedford Institute of Oceanography, Challenger Drive, Dartmouth, NS, Canada B2Y 4A2
7Fisheries and Oceans Canada, Department of Fisheries and Oceans, St. Andrews Biological Station, St. Andrews, NB, Canada E0G 2X0
8Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
9Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, 1432 Aas, Norway

Received 17 August 2012; Revised 29 October 2012; Accepted 9 November 2012

Academic Editor: Mohamed Salem

Copyright © 2012 Anti Vasemägi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Flori, S. Fritz, F. Jaffrézic et al., “The genome response to artificial selection: a case study in dairy cattle,” PLoS ONE, vol. 4, no. 8, Article ID e6595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. D. Purugganan and D. Q. Fuller, “The nature of selection during plant domestication,” Nature, vol. 457, no. 7231, pp. 843–848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Gautier, L. Flori, A. Riebler et al., “A whole genome Bayesian scan for adaptive genetic divergence in West African cattle,” BMC Genomics, vol. 10, article 550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Driscoll, D. W. Macdonald, and S. J. O'Brien, “From wild animals to domestic pets, an evolutionary view of domestication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, supplement 1, pp. 9971–9978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Gu, N. Orr, S. D. Park et al., “A genome scan for positive selection in thoroughbred horses,” PLoS ONE, vol. 4, no. 6, Article ID e5767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Maynard Smith and J. Haigh, “The hitch-hiking effect of a favourable gene,” Genetics Research, vol. 23, no. 1, pp. 23–35, 1974. View at Google Scholar · View at Scopus
  7. M. Przeworski, “The signature of positive selection at randomly chosen loci,” Genetics, vol. 160, no. 3, pp. 1179–1189, 2002. View at Google Scholar · View at Scopus
  8. Y. Kim and R. Neilsen, “Linkage disequilibrium as a signature of selective sweeps,” Genetics, vol. 167, no. 3, pp. 1513–1524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Hermisson and P. S. Pennings, “Soft sweeps: molecular population genetics of adaptation from standing genetic variation,” Genetics, vol. 169, no. 4, pp. 2335–2352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. P. F. Colosimo, K. E. Hosemann, S. Balabhadra et al., “Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles,” Science, vol. 307, no. 5717, pp. 1928–1933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Hohenlohe, S. Bassham, P. D. Etter, N. Stiffler, E. A. Johnson, and W. A. Cresko, “Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags,” PLoS Genetics, vol. 6, no. 2, Article ID e1000862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. S. Pennings and J. Hermisson, “Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration,” Molecular Biology and Evolution, vol. 23, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. S. Pennings and J. Hermisson, “Soft sweeps III: the signature of positive selection from recurrent mutation,” PLoS Genetics, vol. 2, no. 12, article e186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. I. Wright, I. V. Bi, S. G. Schroeder et al., “The effects of artificial selection on the maize genome,” Science, vol. 308, no. 5745, pp. 1310–1314, 2005. View at Google Scholar
  15. L. Trut, I. Oskina, and A. Kharlamova, “Animal evolution during domestication: the domesticated fox as a model,” BioEssays, vol. 31, no. 3, pp. 349–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. M. Gjøen and H. B. Bentsen, “Past, present, and future of genetic improvement in salmon aquaculture,” ICES Journal of Marine Science, vol. 54, no. 6, pp. 1009–1014, 1997. View at Google Scholar · View at Scopus
  17. M. R. Gross, “One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 55, supplement 1, pp. 131–144, 1998. View at Google Scholar · View at Scopus
  18. H. Araki, B. Cooper, and M. S. Blouin, “Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild,” Science, vol. 318, no. 5847, pp. 100–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Allendorf, “Delay of adaptation to captive breeding by equalizing family size,” Conservation Biology, vol. 7, pp. 416–419, 1993. View at Google Scholar
  20. R. S. Waples, “Dispelling some myths about hatcheries,” Fisheries, vol. 24, no. 2, pp. 12–21, 1999. View at Google Scholar · View at Scopus
  21. P. McGinnity, E. Jennings, E. deEyto et al., “Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction,” Proceedings of the Royal Society B, vol. 276, no. 1673, pp. 3601–3610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. M. Araki, B. A. Berejikian, M. J. Ford, and M. S. Blouin, “Fitness of hatchery-reared salmonids in the wild,” Evolutionary Applications, vol. 1, no. 21, pp. 342–355, 2008. View at Google Scholar
  23. P. McGinnity, P. Prodöhl, N. Ó. Maoiléidigh et al., “Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions,” Journal of Fish Biology, vol. 65, supplement 1, pp. 173–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Roberge, S. Einum, H. Guderley, and L. Bernatchez, “Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon,” Molecular Ecology, vol. 15, no. 1, pp. 9–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Roberge, É. Normandeau, S. Einum, H. Guderley, and L. Bernatchez, “Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome,” Molecular Ecology, vol. 17, no. 1, pp. 314–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Raymond and F. Rousset, “Genepop version 1.2, population genetics software for exact tests and ecumenicism,” Journal of Heredity, vol. 86, no. 3, pp. 248–249, 1995. View at Google Scholar
  27. B. S. Weir and C. C. Cockerham, “Estimating F-statistics for the analysis of population structure,” Evolution, vol. 38, no. 6, pp. 1358–1370, 1984. View at Google Scholar · View at Scopus
  28. T. Moen, B. Hayes, M. Baranski et al., “A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers,” BMC Genomics, vol. 9, article 223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Vasemägi, J. Nilsson, and C. R. Primmer, “Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.),” Molecular Biology and Evolution, vol. 22, no. 4, pp. 1067–1076, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. D. Quinton, I. McMillan, and B. D. Glebe, “Development of an Atlantic salmon (Salmo salar) genetic improvement program: genetic parameters of harvest body weight and carcass quality traits estimated with animal models,” Aquaculture, vol. 247, no. 1–4, pp. 211–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Lien, L. Gidskehaug, T. Moen et al., “A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns,” BMC Genomics, vol. 12, article 615, 2011. View at Google Scholar
  32. R. G. Danzmann, E. A. Davidson, M. M. Ferguson et al., “Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon),” BMC Genomics, vol. 9, article 557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. B. Phillips, K. A. Keatley, M. R. Morasch et al., “Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss),” BMC Genetics, vol. 10, article 46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Tang, D. J. Fu, D. Julien, A. Braun, C. R. Cantor, and H. Köstek, “Chip-based genotyping by mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10016–10020, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Vasemägi, R. Gross, T. Paaver, M. L. Koljonen, M. Säisä, and J. Nilsson, “Analysis of gene associated tandem repeat markers in Atlantic salmon (Salmo salar L.) populations: implications for restoration and conservation in the Baltic Sea,” Conservation Genetics, vol. 6, no. 3, pp. 385–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Vasemägi, J. Nilsson, and C. R. Primmer, “Seventy-five EST-linked Atlantic salmon (Salmo solar L.) microsatellite markers and their cross-amplification in five salmonid species,” Molecular Ecology Notes, vol. 5, no. 2, pp. 282–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Goudet, “FSTAT, version 1.2: a computer program to calculate F statistics,” Journal of Heredity, vol. 86, no. 6, pp. 485–486, 1995. View at Google Scholar
  38. S. W. Guo and E. A. Thompson, “Performing the exact test of Hardy-Weinberg proportion for multiple alleles,” Biometrics, vol. 48, no. 2, pp. 361–372, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Beaumont and R. A. Nichols, “Evaluating loci for use in the genetic analysis of population structure,” Proceedings of the Royal Society B, vol. 263, no. 1377, pp. 1619–1626, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Foll and O. Gaggiotti, “A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective,” Genetics, vol. 180, no. 2, pp. 977–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. O. Kauer, D. Dieringer, and C. Schlötterer, “A microsatellite variability screen for positive selection associated with the “Out of Africa” habitat expansion of Drosophila melanogaster,” Genetics, vol. 165, no. 3, pp. 1137–1148, 2003. View at Google Scholar · View at Scopus
  42. B. McEvoy, S. Beleza, and M. D. Shriver, “The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model,” Human Molecular Genetics, vol. 15, no. 2, pp. R176–R181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. D. Storey and R. Tibshirani, “Statistical significance for genomewide studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9440–9445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. D. Storey, “A direct approach to false discovery rates,” Journal of the Royal Statistical Society B, vol. 64, no. 3, pp. 479–498, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Peng and M. Kimmel, “SimuPOP: a forward-time population genetics simulation environment,” Bioinformatics, vol. 21, no. 18, pp. 3686–3687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. R. D. H. Barrett and D. Schluter, “Adaptation from standing genetic variation,” Trends in Ecology and Evolution, vol. 23, no. 1, pp. 38–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Lohm, M. Grahn, Å. Langefors, Ø. Andersen, A. Storset, and T. Von Schantz, “Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection,” Proceedings of the Royal Society B, vol. 269, no. 1504, pp. 2029–2033, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. L. Wang, A. Stec, J. Hey, L. Lukens, and J. Doebley, “The limits of selection during maize domestication,” Nature, vol. 398, no. 6724, pp. 236–239, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. R. M. Clark, E. Linton, J. Messing, and J. F. Doebley, “Pattern of diversity in the genomic region near the maize domestication gene tb1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 700–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. K. M. Olsen, A. L. Caicedo, N. Polato, A. McClung, S. McCouch, and M. D. Purugganan, “Selection under domestication: evidence for a sweep in the rice waxy genomic region,” Genetics, vol. 173, no. 2, pp. 975–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. I. B. Mjølnerød, U. H. Refseth, E. Karlsen, T. Balstad, K. S. Jakobsen, and K. Hindar, “Genetic differences between two wild and one farmed population of Atlantic salmon (Salmo salar) revealed by three classes of genetic markers,” Hereditas, vol. 127, no. 3, pp. 239–248, 1997. View at Google Scholar · View at Scopus
  52. A. T. Norris, D. G. Bradley, and E. P. Cunningham, “Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations,” Aquaculture, vol. 180, no. 3-4, pp. 247–264, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. Ø. Skaala, B. Høyheim, K. A. Glover, and G. Dahle, “Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals,” Aquaculture, vol. 240, no. 1–4, pp. 131–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. F. Storz, “Using genome scans of DNA polymorphism to infer adaptive population divergence,” Molecular Ecology, vol. 14, no. 3, pp. 671–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Vasemägi and C. R. Primmer, “Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies,” Molecular Ecology, vol. 14, no. 12, pp. 3623–3642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. P. C. Sabeti, S. F. Schaffner, B. Fry et al., “Positive natural selection in the human lineage,” Science, vol. 312, no. 5780, pp. 1614–1620, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Tymchuk, D. Sakhrani, and R. H. Devlin, “Domestication causes large-scale effects on gene expression in rainbow trout: analysis of muscle, liver and brain transcriptomes,” General and Comparative Endocrinology, vol. 164, no. 2-3, pp. 175–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. D. P. Reid, A. Szanto, B. Glebe, R. G. Danzmann, and M. M. Ferguson, “QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus),” Heredity, vol. 94, no. 2, pp. 166–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. D. Houston, S. C. Bishop, A. Hamilton et al., “Detection of QTL affecting harvest traits in a commercial Atlantic salmon population,” Animal Genetics, vol. 40, no. 5, pp. 753–755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Baranski, T. Moen, and D.-I. Våge, “Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (Salmo salar),” Genetics, Selection, Evolution, vol. 42, article 17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. E. G. Boulding, M. Culling, B. Glebe, P. R. Berg, S. Lien, and T. Moen, “Conservation genomics of Atlantic salmon: SNPs associated with QTLs for adaptive traits in parr from four trans-Atlantic backcrosses,” Heredity, vol. 101, no. 4, pp. 381–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Vasemägi, R. Gross, D. Palm, T. Paaver, and C. R. Primmer, “Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon,” BMC Genomics, vol. 11, no. 1, article 156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Moen, M. Baranski, A. K. Sonesson, and S. Kjøglum, “Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait,” BMC Genomics, vol. 10, article 368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Freamo, P. O'reilly, P. R. Berg, S. Lien, and E. G. Boulding, “Outlier SNPs show more genetic structure between two Bay of Fundy metapopulations of Atlantic salmon than do neutral SNPs,” Molecular Ecology Resources, vol. 11, no. 1, pp. 254–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Sauvage, N. Derôme, E. Normandeau, J. St-Cyr, C. Audet, and L. Bernatchez, “Fast transcriptional responses to domestication in the brook charr Salvelinus fontinalis,” Genetics, vol. 185, no. 1, pp. 105–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. H. Devlin, D. Sakhrani, W. E. Tymchuk, M. L. Rise, and B. Goh, “Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch),” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3047–3052, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. M. McClure, F. M. Utter, C. Baldwin et al., “Evolutionary effects of alternative artificial propagation programs: implications for viability of endangered anadromous salmonids,” Evolutionary Applications, vol. 1, no. 2, pp. 356–375, 2008. View at Google Scholar
  68. J. L. Kelley, J. Madeoy, J. C. Calhoun, W. Swanson, and J. M. Akey, “Genomic signatures of positive selection in humans and the limits of outlier approaches,” Genome Research, vol. 16, no. 8, pp. 980–989, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. K. M. Teshima, G. Coop, and M. Przeworski, “How reliable are empirical genomic scans for selective sweeps?” Genome Research, vol. 16, no. 6, pp. 702–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Excoffier, T. Hofer, and M. Foll, “Detecting loci under selection in a hierarchically structured population,” Heredity, vol. 103, no. 4, pp. 285–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. M. Akey, “Constructing genomic maps of positive selection in humans: where do we go from here?” Genome Research, vol. 19, no. 5, pp. 711–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Vasemägi, R. Gross, T. Paaver, M. L. Koljonen, and J. Nilsson, “Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic sea: spatio-temporal analysis over 18 years,” Heredity, vol. 95, no. 1, pp. 76–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. J. P. Pollinger, C. D. Bustamante, A. Fledel-Alon, S. Schmutz, M. M. Gray, and R. K. Wayne, “Selective sweep mapping of genes with large phenotypic effects,” Genome Research, vol. 15, no. 12, pp. 1809–1819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. W. Barendse, B. E. Harrison, R. J. Bunch, M. B. Thomas, and L. B. Turner, “Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits,” BMC Genomics, vol. 10, article 178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Bruneaux, S. E. Johnston, G. Herczeg, J. Merilä, C. R. Primmer, and A. Vasemägi, “Molecular evolutionary and population genetic analysis of ninespine stickleback using a modified RAD tag approach,” Molecular Ecology. In press. View at Publisher · View at Google Scholar
  76. I. J. Kullo and K. Ding, “Patterns of population differentiation of candidate genes for cardiovascular disease,” BMC Genetics, vol. 8, article 48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. Hancock, D. B. Witonsky, A. S. Gordon et al., “Adaptations to climate in candidate genes for common metabolic disorders,” PLoS Genetics, vol. 4, no. 2, article e32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Tonteri, A. Vasemägi, J. Lumme, and C. R. Primmer, “Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci,” Molecular Ecology, vol. 19, no. 7, pp. 1273–1282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Brenna-Hansen, J. Li, M. P. Kent et al., “Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis,” BMC Genomics, vol. 13, article 432, 2012. View at Google Scholar
  80. M. K. Burke, J. P. Dunham, P. Shahrestani, K. R. Thornton, M. R. Rose, and A. D. Long, “Genome-wide analysis of a long-term evolution experiment with Drosophila,” Nature, vol. 467, no. 7315, pp. 587–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. J. K. Pritchard, J. K. Pickrell, and G. Coop, “The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation,” Current Biology, vol. 20, no. 4, pp. R208–R215, 2010. View at Publisher · View at Google Scholar · View at Scopus