Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 650842, 10 pages
http://dx.doi.org/10.1155/2012/650842
Research Article

ArraySearch: A Web-Based Genomic Search Engine

Department of Mathematics and Statistics, South Dakota State University, P.O. Box 2220, Brookings, SD 57007, USA

Received 9 August 2011; Revised 24 November 2011; Accepted 28 November 2011

Academic Editor: Ian Dunham

Copyright © 2012 Tyler J. Wilson and Steven X. Ge. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Craigon, N. James, J. Okyere, J. Higgins, J. Jotham, and S. May, “NASCArrays: a repository for microarray data generated by NASC's transcriptomics service,” Nucleic Acids Research, vol. 32, pp. D575–D577, 2004. View at Google Scholar · View at Scopus
  2. T. Hruz, O. Laule, G. Szabo et al., “Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes,” Advances in Bioinformatics, vol. 2008, article 420747, 2008. View at Google Scholar
  3. D. Swarbreck, C. Wilks, P. Lamesch et al., “The Arabidopsis Information Resource (TAIR): gene structure and function annotation,” Nucleic Acids Research, vol. 36, no. 1, pp. D1009–D1014, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Wise, R. A. Caldo, L. Hong, L. Shen, E. Cannon, and J. A. Dickerson, “BarleyBase/PLEXdb,” Methods in Molecular Biology, vol. 406, pp. 347–363, 2007. View at Google Scholar · View at Scopus
  5. D. R. Rhodes, S. Kalyana-Sundaram, V. Mahavisno et al., “Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles,” Neoplasia, vol. 9, no. 2, pp. 166–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. R. Rhodes, J. Yu, K. Shanker et al., “ONCOMINE: a cancer microarray database and integrated data-mining platform,” Neoplasia, vol. 6, no. 1, pp. 1–6, 2004. View at Google Scholar · View at Scopus
  7. D. R. Rhodes, J. Yu, K. Shanker et al., “Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9309–9314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Rhodes, S. Kalyana-Sundaram, V. Mahavisno, T. R. Barrette, D. Ghosh, and A. M. Chinnaiyan, “Mining for regulatory programs in the cancer transcriptome,” Nature Genetics, vol. 37, no. 6, pp. 579–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Lamb, E. D. Crawford, D. Peck et al., “The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease,” Science, vol. 313, no. 5795, pp. 1929–1935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Parkinson, M. Kapushesky, M. Shojatalab et al., “ArrayExpress—a public database of microarray experiments and gene expression profiles,” Nucleic Acids Research, vol. 35, no. 1, pp. D747–D750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome biology, vol. 5, no. 10, p. R80, 2004. View at Google Scholar · View at Scopus
  12. P. Baldi and G. W. Hatfield, DNA Microarrays and Gene Expression: From Experiments to Data Analysis and Modeling, Cambridge University Press, Cambridge, UK, 2002.
  13. P. Baldi and A. D. Long, “A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes,” Bioinformatics, vol. 17, no. 6, pp. 509–519, 2001. View at Google Scholar · View at Scopus
  14. pChart: a PHP class to build charts, http://www.pchart.net/.
  15. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society Series B, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar