Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 756284, 11 pages
http://dx.doi.org/10.1155/2012/756284
Research Article

Functional Genomic Analysis of Variation on Beef Tenderness Induced by Acute Stress in Angus Cattle

1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
2Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
3Department of Animal Breeding and Genetics, College of Animal Sciences, China Agricultural University, Beijing 100193, China
4Bovine Functional Genomic Laboratory, Animal and Natural Resources Institute, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
5Standerds Division, USDA-Agricultural Marketing Service-National Organic Program, Washington, DC 20250, USA

Received 29 November 2011; Accepted 19 January 2012

Academic Editor: Giulia Piaggio

Copyright © 2012 Chunping Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Robinson, D. M. Ferguson, V. H. Oddy, D. Perry, and J. Thompson, “Genetic and environmental influences on beef tenderness,” Australian Journal of Experimental Agriculture, vol. 41, no. 7, pp. 997–1003, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Watson, A. Gee, R. Polkinghorne, and M. Porter, “Consumer assessment of eating quality—development of protocols for Meat Standards Australia (MSA) testing,” Australian Journal of Experimental Agriculture, vol. 48, no. 11, pp. 1360–1367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. L. Huffman, M. F. Miller, L. C. Hoover, C. K. Wu, H. C. Brittin, and C. B. Ramsey, “Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant,” Journal of Animal Science, vol. 74, no. 1, pp. 91–97, 1996. View at Google Scholar · View at Scopus
  4. S. J. Boleman, S. L. Boleman, R. K. Miller et al., “Consumer evaluation of beef of known categories of tenderness,” Journal of Animal Science, vol. 75, no. 6, pp. 1521–1524, 1997. View at Google Scholar · View at Scopus
  5. D. E. Brady, “A study of the factors influencing tenderness and texture of beef,” Journal of Animal Science, vol. 1937, no. 1, pp. 246–250, 1937. View at Google Scholar
  6. K. J. Goodson, W. W. Morgan, J. O. Reagan et al., “Beef Customer Satisfaction: factors affecting consumer evaluations of clod steaks,” Journal of Animal Science, vol. 80, no. 2, pp. 401–408, 2002. View at Google Scholar · View at Scopus
  7. L. E. Jeremiah, “A review of factors influencing consumption, selection and acceptability of meat purchases,” Journal of Consumer Studies & Home Economics, vol. 6, no. 2, pp. 137–154, 1992. View at Google Scholar
  8. R. Kim, “Factors influencing consumers' decision to purchase beef: a South Korean case study,” Journal of International Food and Agribusiness Marketing, vol. 15, no. 1-2, pp. 153–167, 2003. View at Google Scholar · View at Scopus
  9. J. M. Behrends, K. J. Goodson, M. Koohmaraie et al., “Beef customer satisfaction: USDA quality grade and marination effects on consumer evaluations of top round steaks,” Journal of Animal Science, vol. 83, no. 3, pp. 662–670, 2005. View at Google Scholar · View at Scopus
  10. B. Lebret, P. Le Roy, G. Monin et al., “Influence of the three RN genotypes on chemical composition, enzyme activities, and myofiber characteristics of porcine skeletal muscle,” Journal of Animal Science, vol. 77, no. 6, pp. 1482–1489, 1999. View at Google Scholar · View at Scopus
  11. L. Di Stasio, S. Sartore, and A. Albera, “Lack of association of GH1 and POU1F1 gene variants with meat production traits in Piemontese cattle,” Animal Genetics, vol. 33, no. 1, pp. 61–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Barendse, B. E. Harrison, R. J. Bunch, and M. B. Thomas, “Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle,” BMC Genetics, vol. 9, article 41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Hocquette, G. Renard, H. Levéziel, B. Picard, and I. Cassar-Malek, “The potential benefits of genetics and genomics to improve beef quality—a review,” Animal Science Papers and Reports, vol. 24, no. 3, pp. 173–186, 2006. View at Google Scholar
  14. J. L. Gill, S. C. Bishop, C. McCorquodale, J. L. Williams, and P. Wiener, “Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle,” Genetics Selection Evolution, vol. 41, no. 1, article 36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Y. Chen, H. Niu, J. Q. Wang et al., “Polymorphism of DLK1 and CLPG gene and their association with phenotypic traits in Chinese cattle,” Molecular Biology Reports, vol. 38, no. 1, pp. 243–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. P. P. Iglesias, M. E. Caffaro, A. F. Amadio, A. Arias Mañotti, and M. A. Poli, “CAPN1 markers in three Argentinean cattle breeds: report of a new InDel polymorphism within intron 17,” Molecular Biology Reports, vol. 38, no. 3, pp. 1645–1649, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Iwanowska, B. Grześ, B. Mikołajczak et al., “Impact of polymorphism of the regulatory subunit of the μ-calpain (CAPN1S) on the proteolysis process and meat tenderness of young cattle,” Molecular Biology Reports, vol. 38, no. 2, pp. 1295–1300, 2011. View at Publisher · View at Google Scholar
  18. Y. Y. Fan, L. S. Zan, C. Z. Fu et al., “Three novel SNPs in the coding region of PPARγ gene and their associations with meat quality traits in cattle,” Molecular Biology Reports, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. P. Davis, S. S. Moore, R. D. Drinkwater et al., “QTL for meat tenderness in the M. longissimus lumborum of cattle,” Animal Genetics, vol. 39, no. 1, pp. 40–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Gao, R. Zhang, X. Hu, and N. Li, “Application of genomic technologies to the improvement of meat quality of farm animals,” Meat Science, vol. 77, no. 1, pp. 36–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Morzel, C. Terlouw, C. Chambon, D. Micol, and B. Picard, “Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d'Aquitaine” young bulls: a central role of HSP27 isoforms,” Meat Science, vol. 78, no. 3, pp. 297–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Mullen, P. C. Stapleton, D. Corcoran, R. M. Hamill, and A. White, “Understanding meat quality through the application of genomic and proteomic approaches,” Meat Science, vol. 74, no. 1, pp. 3–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Sawdy, S. A. Kaiser, N. R. St-Pierre, and M. P. Wick, “Myofibrillar 1-D fingerprints and myosin heavy chain MS analyses of beef loin at 36 h postmortem correlate with tenderness at 7 days,” Meat Science, vol. 67, no. 3, pp. 421–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Bernard, I. Cassar-Malek, M. Le Cunff, H. Dubroeucq, G. Renand, and J. F. Hocquette, “New indicators of beef sensory quality revealed by expression of specific genes,” Journal of Agricultural and Food Chemistry, vol. 55, no. 13, pp. 5229–5237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Zhang, L. Zan, and H. Wang, “Screening candidate genes related to tenderness trait in Qinchuan cattle by genome array,” Molecular Biology Reports, vol. 38, no. 3, pp. 2007–2014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Zapata, H. N. Zerby, and M. Wick, “Functional proteomic analysis predicts beef tenderness and the tenderness differential,” Journal of Agricultural and Food Chemistry, vol. 57, no. 11, pp. 4956–4963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Koohmaraie, M. P. Kent, S. D. Shackelford, E. Veiseth, and T. L. Wheeler, “Meat tenderness and muscle growth: is there any relationship?” Meat Science, vol. 62, no. 3, pp. 345–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. King, C. E. Schuehle Pfeiffer, R. D. Randel et al., “Influence of animal temperament and stress responsiveness on the carcass quality and beef tenderness of feedlot cattle,” Meat Science, vol. 74, no. 3, pp. 546–556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Grandin, “The effect of stress on livestock and meat quality prior to and during slaughter [Cattle, pigs and sheep],” International Journal for the Study of Animal Problems, vol. 1, pp. 313–337, 1980. View at Google Scholar
  30. P. D. Warriss, “The handling of cattle pre-slaughter and its effects on carcass and meat quality,” Applied Animal Behaviour Science, vol. 28, no. 1-2, pp. 171–186, 1990. View at Google Scholar · View at Scopus
  31. H. Remignon, A. D. Mills, D. Guemene et al., “Meat quality traits and muscle characteristics in high or low fear lines of Japanese quails (Coturnix japonica) subjected to acute stress,” British Poultry Science, vol. 39, no. 3, pp. 372–378, 1998. View at Google Scholar · View at Scopus
  32. C. Zhao, F. Tian, Y. Yu et al., “Muscle transcriptomic analyses in Angus cattle with divergent tenderness,” Molecular Biology Reports, vol. 39, no. 4, pp. 4185–4193, 2012. View at Publisher · View at Google Scholar
  33. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Zheng and X. J. Wang, “GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis,” Nucleic Acids Research, vol. 36, pp. W358–W363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. T. L. Robinson, I. A. Sutherland, and J. Sutherland, “Validation of candidate bovine reference genes for use with real-time PCR,” Veterinary Immunology and Immunopathology, vol. 115, no. 1-2, pp. 160–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Wang, N. I. Bower, A. Reverter et al., “Gene expression patterns during intramuscular fat development in cattle,” Journal of Animal Science, vol. 87, no. 1, pp. 119–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Yu, H. Zhang, F. Tian et al., “Quantitative evaluation of DNA methylation patterns for ALVE and TVB genes in a neoplastic disease susceptible and resistant chicken model,” PLoS One, vol. 3, no. 3, Article ID e1731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Rodas-González, N. Huerta-Leidenz, N. Jerez-Timaure, and M. F. Miller, “Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels,” Meat Science, vol. 83, no. 2, pp. 218–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Fervers, J. S. Burgers, R. Voellinger et al., “Modern approaches to enhancing beef quality,” Tehnologija Mesa, vol. 52, no. 1, pp. 15–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Contreras-Shannon, O. Ochoa, S. M. Reyes-Reyna et al., “Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2−/− mice following ischemic injury,” American Journal of Physiology, vol. 292, no. 2, pp. C953–C967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. K. T. Keylock, V. J. Vieira, M. A. Wallig, L. A. DiPietro, M. Schrementi, and J. A. Woods, “Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice,” American Journal of Physiology, vol. 294, no. 1, pp. R179–R184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Ochoa, D. Sun, S. M. Reyes-Reyna et al., “Delayed angiogenesis and VEGF production in CCR2−/− mice during impaired skeletal muscle regeneration,” American Journal of Physiology, vol. 293, no. 2, pp. R651–R661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. G. L. Warren, L. O'Farrell, M. Summan et al., “Role of CC chemokines in skeletal muscle functional restoration after injury,” American Journal of Physiology, vol. 286, no. 5, pp. C1031–C1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Nedachi, H. Hatakeyama, T. Kono, M. Sato, and M. Kanzaki, “Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes,” American Journal of Physiology, vol. 297, no. 4, pp. E866–E878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Zoico and R. Roubenoff, “The role of cytokines in regulating protein metabolism and muscle function,” Nutrition Reviews, vol. 60, no. 2, pp. 39–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Gadient and P. H. Patterson, “Leukemia inhibitory factor, interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury,” Stem Cells, vol. 17, no. 3, pp. 127–137, 1999. View at Google Scholar · View at Scopus
  48. Y. X. Pan, H. Chen, M. M. Thiaville, and M. S. Kilberg, “Activation of the ATF3 gene through a co-ordinated amino acid-sensing response programme that controls transcriptional regulation of responsive genes following amino acid limitation,” Biochemical Journal, vol. 401, no. 1, pp. 299–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Sun, Y. Wu, B. Chen et al., “Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation,” The Journal of Biological Chemistry, vol. 286, no. 11, pp. 9049–9062, 2011. View at Publisher · View at Google Scholar
  50. H. Liu, P. Wang, W. Song, and X. Sun, “Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways,” The FASEB Journal, vol. 23, no. 10, pp. 3383–3392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Kondo, L. Shimomura, Y. Matsukawa et al., “Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome,” Diabetes, vol. 51, no. 7, pp. 2325–2328, 2002. View at Google Scholar · View at Scopus
  52. T. Yamauchi and T. Kadowaki, “Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases,” International Journal of Obesity, vol. 32, no. 7, pp. S13–S18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. J. L. Michaud, T. Rosenquist, N. R. May, and C. M. Fan, “Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1,” Genes and Development, vol. 12, no. 20, pp. 3264–3275, 1998. View at Google Scholar · View at Scopus
  54. P. Coumailleau and D. Duprez, “Sim1 and Sim2 expression during chick and mouse limb development,” International Journal of Developmental Biology, vol. 53, no. 1, pp. 149–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Chen, X. Zhao, Z. Hao, X. Jiang, X. Guo, and N. Xu, “Molecular characteristics of porcine SIM1 gene and its variants association with carcass and meat quality traits,” Journal of Animal and Veterinary Advances, vol. 10, no. 4, pp. 495–501, 2011. View at Publisher · View at Google Scholar
  56. D. A. Liebermann and B. Hoffman, “Gadd45 in stress signaling,” Journal of Molecular Signaling, vol. 3, article 15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. K. K. Brown, F. S. Alkuraya, M. Matos, R. L. Robertson, V. E. Kimonis, and C. C. Morton, “NR2F1 deletion in a patient with a de novo paracentric inversion, inv(5)(q15q33.2), and syndromic deafness,” American Journal of Medical Genetics, Part A, vol. 149, no. 5, pp. 931–938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Yamada, H. Kawata, Z. Shou et al., “Analysis of zinc-fingers and homeoboxes (ZHX)-1-interacting proteins: molecular cloning and characterization of a member of the ZHX family, ZHX3,” Biochemical Journal, vol. 373, no. 1, pp. 167–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. J. C. Illes, E. Winterbottom, and H. V. Isaacs, “Cloning and expression analysis of the anterior ParaHox genes, Gsh1 and Gsh2 from Xenopus tropicalis,” Developmental Dynamics, vol. 238, no. 1, pp. 194–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. R. R. Waclaw, B. Wang, Z. Pei, L. A. Ehrman, and K. Campbell, “Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates,” Neuron, vol. 63, no. 4, pp. 451–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Izawa, T. Kita, K. Ikeda, and Y. Inoue, “Heat shock and ethanol stress provoke distinctly different responses in 3-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae,” Biochemical Journal, vol. 414, no. 1, pp. 111–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Remakova, M. Skoda, M. Faustova et al., “The expression regulation of the HSPA1B gene in patients with myositis is not dependent on the presence of HLA-DRB1* 03 risk allele,” Annals of the Rheumatic Diseases, vol. 10, supplement 2, article A19, 2011. View at Google Scholar
  63. P. Kaur, M. D. Hurwitz, S. Krishnan, and A. Asea, “Combined hyperthermia and radiotherapy for the treatment of cancer,” Cancers, vol. 3, no. 4, pp. 3799–3823, 2011. View at Publisher · View at Google Scholar