Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 957607, 9 pages
http://dx.doi.org/10.1155/2012/957607
Research Article

Identification and Characterization of MicroRNAs in Macaca fascicularis by EST Analysis

1Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
2Institute of Discovery Biology, Jiangsu Simcere Pharmaceutical R&D Co., Ltd., 699-18 Xuan Wu Avenue, Nanjing 210042, China

Received 16 February 2012; Revised 16 April 2012; Accepted 30 April 2012

Academic Editor: Igor V. Kurochkin

Copyright © 2012 Hao Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Chen, H. Liang, J. Zhang et al., “Horizontal transfer of microRNAs: molecular mechanisms and clinical applications,” Protein & Cell, vol. 3, no. 1, pp. 28–37, 2012. View at Google Scholar
  2. B. Bartel and D. P. Bartel, “MicroRNAs: at the root of plant development?” Plant Physiology, vol. 132, no. 2, pp. 709–717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Carrington and V. Ambros, “Role of microRNAs in plant and animal development,” Science, vol. 301, no. 5631, pp. 336–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Hunter and R. S. Poethig, “miSSING LINKS: miRNAs and plant development,” Current Opinion in Genetics & Development, vol. 13, no. 4, pp. 372–378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Stark, N. Bushati, C. H. Jan et al., “A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands,” Genes & Development, vol. 22, no. 1, pp. 8–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. R. Theriault, J. R. Thistlethwaite, M. G. Levisetti et al., “Induction, maintenance, and reversal, of streptozotocin-induced insulin- dependent diabetes mellitus in the juvenile cynomolgus monkey (Macaca fascilularis),” Transplantation, vol. 68, no. 3, pp. 331–337, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Willard and C. A. Shively, “Modeling depression in adult female cynomolgus monkeys (Macaca fascicularis),” American Journal of Primatology, vol. 74, no. 6, pp. 528–542, 2012. View at Google Scholar
  10. L. Conte-Perales, A. J. Rico, P. Barroso-Chinea et al., “Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys,” Brain Structure and Function, vol. 216, no. 4, pp. 371–386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Falzarano, F. Feldmann, A. Grolla et al., “Single immunization with a monovalent vesicular stomatitis virus-based vaccine protects nonhuman primates against heterologous challenge with Bundibugyo ebolavirus,” The Journal of Infectious Diseases, vol. 204, supplement 3, pp. S1082–S1089, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Keasey, C. Pugh, A. Tikhonov et al., “Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination,” PLoS ONE, vol. 5, no. 12, article e15547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nalca, V. A. Livingston, N. L. Garza et al., “Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus,” PLoS ONE, vol. 5, no. 9, article e12880, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Goff, J. Chapman, C. Foster et al., “A novel respiratory model of infection with monkeypox virus in cynomolgus macaques,” Journal of Virology, vol. 85, no. 10, pp. 4898–4909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Lee, Y. J. Lin, M. C. Deng, T. Y. Lee, and C. C. Huang, “Prevalence of antibody reaction with cercopithecine herpesvirus 1 antigen in Macaca cyclopis, Macaca fascicularis, and Papio anubis in Taiwan,” Journal of Medical Primatology, vol. 36, no. 6, pp. 343–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction,” Nucleic Acids Research, vol. 31, no. 13, pp. 3406–3415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. H. Zhang, X. P. Pan, S. B. Cox, G. P. Cobb, and T. A. Anderson, “Evidence that miRNAs are different from other RNAs,” Cellular and Molecular Life Sciences, vol. 63, no. 2, pp. 246–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. F. Flores-Jasso, C. Arenas-Huertero, J. L. Reyes, C. Contreras-Cubas, A. Covarrubias, and L. Vaca, “First step in pre-miRNAs processing by human Dicer,” Acta Pharmacologica Sinica, vol. 30, no. 8, pp. 1177–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Huang, Q. Zou, H. Song et al., “A study of miRNAs targets prediction and experimental validation,” Protein & Cell, vol. 1, no. 11, pp. 979–986, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Ambros, B. Bartel, D. P. Bartel et al., “A uniform system for microRNA annotation,” RNA, vol. 9, no. 3, pp. 277–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. C. Li, C. Y. Pan, and W. C. Lin, “Bioinformatic discovery of microRNA precursors from human ESTs and introns,” BMC Genomics, vol. 7, article 164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Gu, T. He, Y. Pei et al., “Primary transcripts and expressions of mammal intergenic microRNAs detected by mapping ESTs to their flanking sequences,” Mammalian Genome, vol. 17, no. 10, pp. 1033–1041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. M. Krzyzanowski, F. D. Price, E. M. Muro, M. A. Rudnicki, and M. A. Andrade-Navarro, “Integration of expressed sequence tag data flanking predicted RNA secondary structures facilitates novel non-coding RNA discovery,” PLoS ONE, vol. 6, no. 6, article e20561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Unver, D. M. Namuth-Covert, and H. Budak, “Review of current methodological approaches for characterizing MicroRNAs in plants,” International Journal of Plant Genomics, vol. 2009, Article ID 262463, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. A. He, Z. Nie, J. Chen et al., “Identification and characteristics of microRNAs from Bombyx mori,” BMC Genomics, vol. 9, article 248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, “The protein kinase complement of the human genome,” Science, vol. 298, no. 5600, pp. 1912–1934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, “Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA,” Science, vol. 309, no. 5740, pp. 1577–1581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Piriyapongsa and I. K. Jordan, “A family of human microRNA genes from miniature inverted-repeat transposable elements,” PLoS ONE, vol. 2, no. 2, article e203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. W. P. Tsang, E. K. O. Ng, S. S. M. Ng et al., “Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer,” Carcinogenesis, vol. 31, no. 3, pp. 350–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Lu and X. Yang, “Computational identification of novel microRNAs and their targets in vigna unguiculata,” Comparative and Functional Genomics, vol. 2010, Article ID 128297, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. H. Zhang, X. P. Pan, Q. L. Wang, G. P. Cobb, and T. A. Anderson, “Identification and characterization of new plant microRNAs using EST analysis,” Cell Research, vol. 15, no. 5, pp. 336–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Wang, J. Zhang, F. Li et al., “MicroRNA identification based on sequence and structure alignment,” Bioinformatics, vol. 21, no. 18, pp. 3610–3614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Berezikov, “Evolution of microRNA diversity and regulation in animals,” Nature Reviews Genetics, vol. 12, no. 12, pp. 846–860, 2011. View at Publisher · View at Google Scholar · View at Scopus