Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013 (2013), Article ID 275616, 4 pages
Research Article

Comparative Inference of Duplicated Genes Produced by Polyploidization in Soybean Genome

1College of Science, Hebei United University, Tangshan, Hebei 063009, China
2Center for Genomics and Computational Biology, School of Life Sciences, Hebei United University, Tangshan, Hebei 063009, China

Received 23 July 2013; Accepted 18 September 2013

Academic Editor: Guang Hu

Copyright © 2013 Yanmei Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.