International Journal of Genomics
Volume 2013 (2013), Article ID 473242, 9 pages
http://dx.doi.org/10.1155/2013/473242
Research Article
TSP-1-1223 A/G Polymorphism as a Potential Predictor of the Recurrence Risk of Bladder Cancer in a Chinese Population
1Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
2Cancer Center of Nanjing Medical University, Department of Molecular & Genetic Toxicology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
Received 27 September 2013; Accepted 6 November 2013
Academic Editor: Brian Wigdahl
Copyright © 2013 Xiao Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
- E. Liu, Y. Xiang, F. Jin et al., “Cancer incidence trends in urban Shanghai, China (1972-1999),” Tumor, vol. 24, no. 1, pp. 11–13, 2004. View at Google Scholar
- D. S. Kaufman, W. U. Shipley, and A. S. Feldman, “Bladder cancer,” The Lancet, vol. 374, no. 9685, pp. 239–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
- H. Rubben, W. Lutzeyer, N. Fischer et al., “Natural history and treatment of low and high risk superficial bladder tumors,” Journal of Urology, vol. 139, no. 2, pp. 283–285, 1988. View at Google Scholar · View at Scopus
- G. A. Giovino, S. A. Mirza, J. M. Samet et al., “Tobacco use in 3 billion individuals from 16 countries: an analysis of nationally representative cross-sectional household surveys,” The Lancet, vol. 380, pp. 668–679, 2012. View at Google Scholar
- D. A. Walz, “Thrombospondin as a mediator of cancer cell adhesion in metastasis,” Cancer and Metastasis Reviews, vol. 11, no. 3-4, pp. 313–324, 1992. View at Publisher · View at Google Scholar · View at Scopus
- G. Taraboletti, D. Roberts, L. A. Liotta, and R. Giavazzi, “Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor,” The Journal of Cell Biology, vol. 111, no. 2, pp. 765–772, 1990. View at Publisher · View at Google Scholar · View at Scopus
- G. Taraboletti, D. D. Roberts, and L. A. Liotta, “Thrombodspondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains,” The Journal of Cell Biology, vol. 105, no. 5, pp. 2409–2415, 1987. View at Google Scholar · View at Scopus
- B. J. Nickoloff, R. S. Mitra, B. L. Riser, V. M. Dixit, and J. Varani, “Modulation of keratinocyte motility. Correlation with production of extracellular matrix molecules in response to growth promoting and antiproliferative factors,” American Journal of Pathology, vol. 132, no. 3, pp. 543–551, 1988. View at Google Scholar · View at Scopus
- M. J. Reed, P. Puolakkainen, T. F. Lane, D. Dickerson, P. Bornstein, and E. H. Sage, “Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization,” Journal of Histochemistry and Cytochemistry, vol. 41, no. 10, pp. 1467–1477, 1993. View at Google Scholar · View at Scopus
- J. Varani, V. M. Dixit, and S. E. G. Fligiel, “Thrombospondin-induced attachment and spreading of human squamous carcinoma cells,” Experimental Cell Research, vol. 167, no. 2, pp. 376–390, 1986. View at Google Scholar · View at Scopus
- D. D. Roberts, J. A. Sherwood, and V. Ginsburg, “Platelet thrombospondin mediates attachment and spreading of human melanoma cells,” The Journal of Cell Biology, vol. 104, no. 1, pp. 131–139, 1987. View at Google Scholar · View at Scopus
- C. Nucera, A. Porrello, Z. A. Antonello et al., “B-RafV600Eand thrombospondin-1 promote thyroid cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 23, pp. 10649–10654, 2010. View at Publisher · View at Google Scholar · View at Scopus
- W. Wei, K. Beihua, Y. Qifeng, and Q. Xun, “Hepatocyte growth factor enhances ovarian cancer cell invasion through downregulation of thrombospondin-1,” Cancer Biology and Therapy, vol. 9, no. 2, pp. 79–87, 2010. View at Google Scholar · View at Scopus
- M. K. McElroy, S. Kaushal, H. S. Tran Cao et al., “Upregulation of thrombospondin-1 and angiogenesis in an aggressive human pancreatic cancer cell line selected for high metastasis,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1779–1786, 2009. View at Publisher · View at Google Scholar · View at Scopus
- D. P. Zubac, L. Bostad, B. Kihl, T. Seidal, T. Wentzel-Larsen, and S. A. Haukaas, “The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival,” Journal of Urology, vol. 182, no. 5, pp. 2144–2149, 2009. View at Publisher · View at Google Scholar · View at Scopus
- G. D. Grossfeld, D. A. Ginsberg, J. P. Stein et al., “Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression,” Journal of the National Cancer Institute, vol. 89, no. 3, pp. 219–227, 1997. View at Google Scholar · View at Scopus
- J. C. Goddard, C. D. Sutton, J. L. Jones, K. J. O'Byrne, and R. C. Kockelbergh, “Reduced Thrombospondin-1 at presentation predicts disease progression in superficial bladder cancer,” European Urology, vol. 42, no. 5, pp. 464–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
- X. Wu, X. Lin, C. P. Dinney, J. Gu, and H. B. Grossman, “Genetic polymorphism in bladder cancer,” Frontiers in Bioscience, vol. 12, no. 1, pp. 192–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
- B.-L. A. Hannah, T. M. Misenheimer, M. M. Pranghofer, and D. F. Mosher, “A polymorphism in thrombospondin-1 associated with familial premature coronary artery disease alters Ca2+ binding,” The Journal of Biological Chemistry, vol. 279, no. 50, pp. 51915–51922, 2004. View at Publisher · View at Google Scholar · View at Scopus
- J. I. Zwicker, F. Peyvandi, R. Palla et al., “The thrombospondin-1 N700S polymorphism is associated with early myocardial infarction without altering von Willebrand factor multimer size,” Blood, vol. 108, no. 4, pp. 1280–1283, 2006. View at Publisher · View at Google Scholar · View at Scopus
- C. D. Laherty, T. M. Gierman, and V. M. Dixit, “Characterization of the promoter region of the human thrombospondin gene. DNA sequences within the first intron increase transcription,” The Journal of Biological Chemistry, vol. 264, no. 19, pp. 11222–11227, 1989. View at Google Scholar · View at Scopus
- N.-H. Guo, N. S. Templeton, H. Al-Barazi et al., “Thrombospondin-1 promotes α3β1 integrin-mediated adhesion and neurite- like outgrowth and inhibits proliferation of small cell lung carcinoma cells,” Cancer Research, vol. 60, no. 2, pp. 457–466, 2000. View at Google Scholar · View at Scopus
- D. Albo, J. P. Arnoletti, A. Castiglioni et al., “Thrombospondin (TSP) and transforming growth factor beta 1 (TGF-β) promote human A549 lung carcinoma cell plasminogen activator inhibitor type 1 (PAI-1) production and stimulate tumor cell attachment in vitro,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 857–865, 1994. View at Publisher · View at Google Scholar · View at Scopus
- Y. Yamashita, S. Sendo, T. Hosokawa et al., “Exogenous thrombospondin stimulates the proliferation of non-thrombospondin-producing cells,” International Journal of Oncology, vol. 13, no. 2, pp. 355–359, 1998. View at Google Scholar · View at Scopus
- B. Ren, K. O. Yee, J. Lawler, and R. Khosravi-Far, “Regulation of tumor angiogenesis by thrombospondin-1,” Biochimica et Biophysica Acta, vol. 1765, no. 2, pp. 178–188, 2006. View at Publisher · View at Google Scholar · View at Scopus
- E. K. Rofstad and B. A. Graff, “Thrombospondin-1-mediated metastasis suppression by the primary tumor in human melanoma xenografts,” Journal of Investigative Dermatology, vol. 117, no. 5, pp. 1042–1049, 2001. View at Publisher · View at Google Scholar · View at Scopus
- R. J. Jin, C. Kwak, S. G. Lee et al., “The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts,” Cancer Gene Therapy, vol. 7, no. 12, pp. 1537–1542, 2000. View at Google Scholar · View at Scopus
- M. Streit, P. Velasco, L. F. Brown et al., “Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas,” American Journal of Pathology, vol. 155, no. 2, pp. 441–452, 1999. View at Google Scholar · View at Scopus
- M. Tenan, G. Fulci, M. Albertoni et al., “Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells,” Journal of Experimental Medicine, vol. 191, no. 10, pp. 1789–1797, 2000. View at Publisher · View at Google Scholar · View at Scopus
- G. P. Tuszynski, T. B. Gasic, and V. L. Rothman, “Thrombospondin, a potentiator of tumor cell metastasis,” Cancer Research, vol. 47, no. 15, pp. 4130–4133, 1987. View at Google Scholar · View at Scopus
- S. Y. Wong, A. T. Purdie, and P. Han, “Thrombospondin and other possible related matrix proteins in malignant and benign breast disease: an immunohistochemical study,” American Journal of Pathology, vol. 140, no. 6, pp. 1473–1482, 1992. View at Google Scholar · View at Scopus
- S. C. Campbell, O. V. Volpert, M. Ivanovich, and N. P. Bouck, “Molecular mediators of angiogenesis in bladder cancer,” Cancer Research, vol. 58, no. 6, pp. 1298–1304, 1998. View at Google Scholar · View at Scopus
- U. Agrawal, A. K. Mishra, P. Salgia, S. Verma, N. K. Mohanty, and S. Saxena, “Role of tumor suppressor and angiogenesis markers in prediction of recurrence of non muscle invasive bladder cancer,” Pathology and Oncology Research, vol. 17, no. 1, pp. 91–101, 2011. View at Publisher · View at Google Scholar · View at Scopus
- S. Meyers, J. R. Downing, and S. W. Hiebert, “Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions,” Molecular and Cellular Biology, vol. 13, no. 10, pp. 6336–6345, 1993. View at Google Scholar · View at Scopus
- J. H. Kim, S. Lee, J. K. Rho, and S. Y. Choe, “AML1, the target of chromosomal rearrangements in human leukemia, regulates the expression of human complement receptor type 1 (CR1) gene,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 9, pp. 933–940, 1999. View at Publisher · View at Google Scholar · View at Scopus
- T. Tanaka, K. Tanaka, S. Ogawa et al., “An acute myeloid leukemia gene, AML 1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms,” EMBO Journal, vol. 14, no. 2, pp. 341–350, 1995. View at Google Scholar · View at Scopus
- J. C. Rodríguez-Manzaneque, T. F. Lane, M. A. Ortega, R. O. Hynes, J. Lawler, and M. L. Iruela-Arispe, “Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12485–12490, 2001. View at Publisher · View at Google Scholar · View at Scopus
- K. Gupta, P. Gupta, R. Wild, S. Ramakrishnan, and R. P. Hebbel, “Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis,” Angiogenesis, vol. 3, no. 2, pp. 147–158, 1999. View at Google Scholar · View at Scopus
- N. Ferrara and T. Davis-Smyth, “The biology of vascular endothelial growth factor,” Endocrine Reviews, vol. 18, no. 1, pp. 4–25, 1997. View at Publisher · View at Google Scholar · View at Scopus
- J. P. Crew, T. O'Brien, M. Bradburn et al., “Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer,” Cancer Research, vol. 57, no. 23, pp. 5281–5285, 1997. View at Google Scholar · View at Scopus