Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2013, Article ID 480534, 10 pages
http://dx.doi.org/10.1155/2013/480534
Research Article

Integrated Analysis of Long Noncoding RNA and Coding RNA Expression in Esophageal Squamous Cell Carcinoma

1Clinical Research Center, People’s Hospital of Zhengzhou, 33 Yellow River Road, Zhengzhou, Henan 45003, China
2Department of Pathology and Experimental Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
3Science and Education Department, Health Bureau of Zhengzhou, China
4Departments of Medical Genetics and Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 4N1

Received 28 May 2013; Accepted 26 August 2013

Academic Editor: Soraya E. Gutierrez

Copyright © 2013 Wei Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Wu and J. A. Chan, “Understanding the role of long noncoding RNAs in the cancer genome,” in Next Generation Sequencing in Cancer Research-Decoding Cancer Genome, W. Wu and H. Choudhry, Eds., pp. 199–215, Springer, New York, NY, USA, 2013. View at Google Scholar
  3. J. J. Hao, T. Gong, Y. Zhang et al., “Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells,” Gene, vol. 513, no. 1, pp. 196–201, 2013. View at Publisher · View at Google Scholar
  4. M. Kano, N. Seki, N. Kikkawa et al., “MiR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma,” International Journal of Cancer, vol. 127, no. 12, pp. 2804–2814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Su, N. Hu, H. H. Yang et al., “Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes,” Clinical Cancer Research, vol. 17, no. 9, pp. 2955–2966, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Greenawalt, C. Duong, G. K. Smyth et al., “Gene expression profiling of esophageal cancer: comparative analysis of Barrett's esophagus, adenocarcinoma, and squamous cell carcinoma,” International Journal of Cancer, vol. 120, no. 9, pp. 1914–1921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Dunham, A. Kundaje, S. F. Aldred et al., “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489, no. 7414, pp. 57–74, 2012. View at Publisher · View at Google Scholar
  8. E. A. Gibb, C. J. Brown, and W. L. Lam, “The functional role of long non-coding RNA in human carcinomas,” Molecular Cancer, vol. 10, article 38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Brunner, A. H. Beck, B. Edris et al., “Transcriptional profiling of lncRNAs and novel transcribed regions across a diverse panel of archived human cancers,” Genome Biology, vol. 13, no. 8, article R75, 2012. View at Publisher · View at Google Scholar
  10. M. Guttman and J. L. Rinn, “Modular regulatory principles of large non-coding RNAs,” Nature, vol. 482, no. 7385, pp. 339–346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. K. C. Wang, Y. W. Yang, B. Liu et al., “A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression,” Nature, vol. 472, no. 7341, pp. 120–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Dean, “On a chromosome far, far away: LCRs and gene expression,” Trends in Genetics, vol. 22, no. 1, pp. 38–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Kogo, T. Shimamura, K. Mimori et al., “Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers,” Cancer Research, vol. 71, no. 20, pp. 6320–6326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kim, I. Jutooru, G. Chadalapaka et al., “HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer,” Oncogene, vol. 32, pp. 1616–1625, 2013. View at Publisher · View at Google Scholar
  17. D. Li, J. Feng, T. Wu et al., “Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma,” The American Journal of Pathology, vol. 182, no. 1, pp. 64–70, 2013. View at Publisher · View at Google Scholar
  18. A. Bhan, I. Hussain, K. I. Ansari, S. Kasiri, A. Bashyal, and S. S. Mandal, “Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol,” Journal of Molecular Biology, vol. 425, no. 19, pp. 3707–3722, 2013. View at Publisher · View at Google Scholar
  19. D. Cejka, D. Losert, and V. Wacheck, “Short interfering RNA (siRNA): tool or therapeutic?” Clinical Science, vol. 110, no. 1, pp. 47–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Prensner and A. M. Chinnaiyan, “The emergence of lncRNAs in cancer biology,” Cancer Discovery, vol. 1, pp. 391–407, 2011. View at Publisher · View at Google Scholar
  21. W. Wu, T. D. Bhagat, X. Yang et al., “Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma,” Gastroenterology, vol. 144, no. 5, pp. 956–966, 2013. View at Publisher · View at Google Scholar
  22. E. Özgür, U. Mert, M. Isin, M. Okutan, N. Dalay, and U. Gezer, “Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells,” Clinical and Experimental Medicine, vol. 13, no. 2, pp. 119–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Li, Q. C. Feng, and J. S. Li, “Differential gene expression profiling of oesophageal squamous cell carcinoma by dna microarray and bioinformatics analysis,” Journal of International Medical Research, vol. 38, no. 6, pp. 1904–1912, 2010. View at Google Scholar · View at Scopus
  24. S. Ma, J. Y. Bao, P. S. Kwan et al., “Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma,” Gastroenterology, vol. 143, pp. 675–686, 2012. View at Publisher · View at Google Scholar
  25. M. Tong, K. W. Chan, J. Y. Bao et al., “Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma,” Cancer Research, vol. 72, no. 22, pp. 6024–6035, 2012. View at Publisher · View at Google Scholar
  26. Y. J. Geng, S. L. Xie, Q. Li, J. Ma, and G. Y. Wang, “Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression,” Journal of International Medical Research, vol. 39, no. 6, pp. 2119–2128, 2011. View at Google Scholar · View at Scopus
  27. X. Zhou, T. J. Lawrence, Z. He, C. R. Pound, J. Mao, and S. A. Bigler, “The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer,” Experimental and Molecular Pathology, vol. 92, no. 1, pp. 105–110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Morita, T. Sakaguchi, K. Ikegami et al., “Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression,” Journal of Hepatology, vol. 59, no. 2, pp. 292–299, 2013. View at Publisher · View at Google Scholar