Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2014, Article ID 850607, 9 pages
http://dx.doi.org/10.1155/2014/850607
Research Article

Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, India

Received 15 March 2014; Revised 3 July 2014; Accepted 6 July 2014; Published 7 August 2014

Academic Editor: Graziano Pesole

Copyright © 2014 Subrata Pal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Schröder, E. Johnson, and S. de Vries, “Microbial ferric iron reductases,” FEMS Microbiology Reviews, vol. 27, no. 2-3, pp. 427–447, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Petrat, S. Paluch, E. Dogruöz et al., “Reduction of Fe(III) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro: implications for an enzymatic reduction of Fe(III) ions of the labile iron pool,” The Journal of Biological Chemistry, vol. 278, no. 47, pp. 46403–46413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Zhang, X. Meng, N. Li et al., “Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1,” Journal of Bacteriology, vol. 195, no. 4, pp. 876–885, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Bester, D. Litthauer, L. A. Piater, and E. van Heerden, “A thioredoxin reductase-like protein from the thermophile, Thermus scotoductus SA-01, displaying iron reductase activity,” FEMS Microbiology Letters, vol. 302, no. 2, pp. 182–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Mazoch, R. Tesařík, V. Sedláček, I. Kučera, and J. Turánek, “Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans,” European Journal of Biochemistry, vol. 271, no. 3, pp. 553–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Kaufmann and D. R. Lovley, “Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens,” Journal of Bacteriology, vol. 183, no. 15, pp. 4468–4476, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Fontecave, J. Coves, and J.-L. Pierre, “Ferric reductases or flavin reductases?” BioMetals, vol. 7, no. 1, pp. 3–8, 1994. View at Google Scholar · View at Scopus
  8. D. C. Bhowmick, B. Bal, N. S. Chatterjee, A. N. Ghosh, and S. Pal, “A low-GC Gram-positive Thermoanaerobacter-like bacterium isolated from an Indian hot spring contains Cr(VI) reduction activity both in the membrane and cytoplasm,” Journal of Applied Microbiology, vol. 106, no. 6, pp. 2006–2016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. C. Paul, P. Jain, J. Mitra et al., “Induction of Cr(VI) reduction activity in an Anoxybacillus strain under heat stress: a biochemical and proteomic study,” FEMS Microbiology Letters, vol. 331, no. 1, pp. 70–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Gaspard, F. Vazquez, and C. Holliger, “Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3188–3194, 1998. View at Google Scholar · View at Scopus
  11. C. Lambert, N. Léonard, X. de Bolle, and E. Depiereux, “ESyPred3D: prediction of proteins 3D structures,” Bioinformatics, vol. 18, no. 9, pp. 1250–1256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Holm and J. Park, “DaliLite workbench for protein structure comparison,” Bioinformatics, vol. 16, no. 6, pp. 566–567, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Krissinel and K. Henrick, “Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions,” Acta Crystallographica D: Biological Crystallography, vol. 60, no. 12 I, pp. 2256–2268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Eriksson and D. Fenyö, “Protein identification in complex mixtures,” Journal of Proteome Research, vol. 4, no. 2, pp. 387–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Opperman and E. van Heerden, “A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01,” FEMS Microbiology Letters, vol. 280, no. 2, pp. 210–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Dym and D. Eisenberg, “Sequence-structure analysis of FAD-containing proteins,” Protein Science, vol. 10, no. 9, pp. 1712–1728, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Yang and K. Ma, “Characterization of a thioredoxin-thioredoxin reductase system from the hyperthermophilic bacterium Thermotoga maritama,” Journal of Bacteriology, vol. 192, no. 5, pp. 1370–1376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Vargas, K. Kashefi, E. L. Blunt-Harris, and D. R. Lovley, “Microbiological evidence for Fe(III) reduction on early earth,” Nature, vol. 395, no. 6697, pp. 65–67, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Belchik, D. W. Kennedy, A. C. Dohnalkova et al., “Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1,” Applied and Environmental Microbiology, vol. 77, no. 12, pp. 4035–4041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Sedláček and I. Kučera, “Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance,” Archives of Microbiology, vol. 192, no. 11, pp. 919–926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Kleiger and D. Eisenberg, “GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding rossmann folds through Cα-HO hydrogen bonds and van der Waals interactions,” Journal of Molecular Biology, vol. 323, no. 1, pp. 69–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Li and L. R. Krumholz, “Thioredoxin is involved in U(VI) and Cr(VI) reduction in Desulfovibrio desulfuricans G20,” Journal of Bacteriology, vol. 191, no. 15, pp. 4924–4933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Martin, “Thioredoxin—a fold for all reasons,” Structure, vol. 3, no. 3, pp. 245–250, 1995. View at Publisher · View at Google Scholar · View at Scopus