Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2014, Article ID 970607, 15 pages
http://dx.doi.org/10.1155/2014/970607
Review Article

Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation

Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran

Received 21 May 2014; Revised 9 July 2014; Accepted 17 July 2014; Published 10 August 2014

Academic Editor: Shen Liang Chen

Copyright © 2014 Ayla Valinezhad Orang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. R. W. Carthew and E. J. Sontheimer, “Origins and mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ghildiyal and P. D. Zamore, “Small silencing RNAs: an expanding universe,” Nature Reviews Genetics, vol. 10, no. 2, pp. 94–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. V. N. Kim, J. Han, and M. C. Siomi, “Biogenesis of small RNAs in animals,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 126–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Siomi and M. C. Siomi, “On the road to reading the RNA-interference code,” Nature, vol. 457, no. 7228, pp. 396–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Oliveira-Carvalho, V. O. Carvalho, M. M. Silva, G. V. Guimarães, and E. A. Bocchi, “MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure?” Arquivos Brasileiros de Cardiologia, vol. 98, no. 4, pp. 362–369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. J. Johnston Jr. and O. Hobert, “A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans,” Nature, vol. 426, no. 6968, pp. 845–849, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhao, E. Samal, and D. Srivastava, “Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis,” Nature, vol. 436, no. 7048, pp. 214–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Cheng, M. W. Byrom, J. Shelton, and L. P. Ford, “Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis,” Nucleic Acids Research, vol. 33, no. 4, pp. 1290–1297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Chen, E. M. Mandel, J. M. Thomson et al., “The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation,” Nature Genetics, vol. 38, no. 2, pp. 228–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Hatfield, H. R. Shcherbata, K. A. Fischer, K. Nakahara, R. W. Carthew, and H. Ruohola-Baker, “Stem cell division is regulated by the microRNA pathway,” Nature, vol. 435, no. 7044, pp. 974–978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Croce and G. A. Calin, “miRNAs, cancer, and stem cell division,” Cell, vol. 122, no. 1, pp. 6–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Naguibneva, M. Ameyar-Zazoua, A. Polesskaya et al., “The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation,” Nature Cell Biology, vol. 8, no. 3, pp. 278–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Filipowicz, “RNAi: the nuts and bolts of the RISC machine,” Cell, vol. 122, no. 1, pp. 17–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Jamshidi-Adegani, L. Langroudi, A. Shafiee, A. Mohammadi-Sangcheshmeh, A. Ardeshirylajimi, and M. Barzegar, “Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells,” Tumour Biology, 2014. View at Publisher · View at Google Scholar
  18. K. Matsushima, H. Isomoto, N. Yamaguchi et al., “MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells,” Journal of Translational Medicine, vol. 9, article 30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. N. Poy, L. Eliasson, J. Krutzfeldt et al., “A pancreatic islet-specific microRNA regulates insulin secretion,” Nature, vol. 432, no. 7014, pp. 226–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. R. Mollaie, S. H. Monavari, S. A. Arabzadeh, M. Shamsi-Shahrabadi, M. Fazlalipour, and R. M. Afshar, “RNAi and miRNA in viral infections and cancers,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 12, pp. 7045–7056, 2013. View at Google Scholar
  21. D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of microRNAs on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. V. Orang, R. Safaralizadeh, and M. A. Hosseinpour Feizi, “Insights into the diverse roles of miR-205 in human cancers,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 2, pp. 577–83, 2014. View at Google Scholar
  23. C. Thorns, C. Schurmann, N. Gebauer et al., “Global MicroRNA profiling of pancreatic neuroendocrine neoplasias,” Anticancer Research, vol. 34, no. 5, pp. 2249–2254, 2014. View at Google Scholar
  24. M. Li, J. Li, X. Ding, M. He, and S.-Y. Cheng, “microRNA and cancer,” The AAPS Journal, vol. 12, no. 3, pp. 309–317, 2010. View at Publisher · View at Google Scholar
  25. R. Rupaimoole, H. Han, G. Lopez-Berestein, and A. K. Sood, “MicroRNA therapeutics: principles, expectations, and challenges,” Chinese Journal of Cancer, vol. 30, no. 6, pp. 368–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B. P. Lewis, I.-H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge, “Prediction of mammalian microRNA targets,” Cell, vol. 115, no. 7, pp. 787–798, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Brennecke, A. Stark, R. B. Russell, and S. M. Cohen, “Principles of microRNA-target recognition,” PLoS Biology, vol. 3, no. 3, article e85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Watanabe, M. Tomita, and A. Kanai, “Computational methods for microRNA target prediction,” Methods in Enzymology, vol. 427, pp. 65–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. W. Nilsen, “Mechanisms of microRNA-mediated gene regulation in animal cells,” Trends in Genetics, vol. 23, no. 5, pp. 243–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Vasudevan, “Posttranscriptional upregulation by microRNAs,” Wiley Interdisciplinary Reviews: RNA, vol. 3, no. 3, pp. 311–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. V. N. Kim and J. W. Nam, “Genomics of microRNA,” Trends in Genetics : TIG, vol. 22, no. 3, pp. 165–173, 2006. View at Publisher · View at Google Scholar
  32. J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Shomron and C. Levy, “MicroRNA-biogenesis and pre-mRNA splicing crosstalk,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 594678, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Seitz, N. Youngson, S. Lin et al., “Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene,” Nature Genetics, vol. 34, no. 3, pp. 261–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Sevignani, G. A. Calin, S. C. Nnadi et al., “MicroRNA genes are frequently located near mouse cancer susceptibility loci,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 19, pp. 8017–8022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Huppi, N. Volfovsky, T. Runfola et al., “The identification of microRNAs in a genomically unstable region of human chromosome 8q24,” Molecular Cancer Research, vol. 6, no. 2, pp. 212–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. G. Hoss, V. K. Kartha, X. Dong et al., “MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis,” PLoS Genetics, vol. 10, no. 2, Article ID e1004188, 2014. View at Publisher · View at Google Scholar
  39. A. Issabekova, O. Berillo, and M. Regnier, “Anatoly I. Interactions of intergenic microRNAs with mRNAs of genes involved in carcinogenesis,” Bioinformation, vol. 8, no. 11, pp. 513–518, 2012. View at Publisher · View at Google Scholar
  40. I. Godnic, M. Zorc, D. Jevsinek Skok et al., “Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken,” PLoS ONE, vol. 8, no. 6, Article ID e65165, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Ozsolak, L. L. Poling, Z. Wang et al., “Chromatin structure analyses identify miRNA promoters,” Genes & Development, vol. 22, no. 22, pp. 3172–3183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. B. C. Schanen and X. Li, “Transcriptional regulation of mammalian miRNA genes,” Genomics, vol. 97, no. 1, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. G. M. Borchert, W. Lanier, and B. L. Davidson, “RNA polymerase III transcribes human microRNAs,” Nature Structural & Molecular Biology, vol. 13, no. 12, pp. 1097–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Liu, K. Fortin, and Z. Mourelatos, “MicroRNAs: biogenesis and molecular functions,” Brain Pathology, vol. 18, no. 1, pp. 113–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Denli, B. B. J. Tops, R. H. A. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the Microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. R. I. Gregory, K. Yan, G. Amuthan et al., “The Microprocessor complex mediates the genesis of microRNAs,” Nature, vol. 432, no. 7014, pp. 235–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Rodriguez, S. Griffiths-Jones, J. L. Ashurst, and A. Bradley, “Identification of mammalian microRNA host genes and transcription units,” Genome Research, vol. 14, no. 10A, pp. 1902–1910, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Gwizdek, B. Ossareh-Nazari, A. M. Brownawell et al., “Exportin-5 mediates nuclear export of minihelix-containing RNAs,” The Journal of Biological Chemistry, vol. 278, no. 8, pp. 5505–5508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Zeng and B. R. Cullen, “Structural requirements for pre-microRNA binding and nuclear export by Exportin 5,” Nucleic Acids Research, vol. 32, no. 16, pp. 4776–4785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. R. Ladomery, D. G. Maddocks, and I. D. Wilson, “MicroRNAs: their discovery, biogenesis, function and potential use as biomarkers in non-invasive prenatal diagnostics,” International Journal of Molecular Epidemiology and Genetics, vol. 2, no. 3, pp. 253–260, 2011. View at Google Scholar · View at Scopus
  54. D. S. Schwarz and P. D. Zamore, “Why do miRNAs live in the miRNP?” Genes and Development, vol. 16, no. 9, pp. 1025–1031, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Cai, X. Yu, S. Hu, and J. Yu, “A brief review on the mechanisms of miRNA regulation,” Genomics, Proteomics & Bioinformatics, vol. 7, no. 4, pp. 147–154, 2009. View at Publisher · View at Google Scholar
  56. J. A. Steitz and S. Vasudevan, “miRNPs: versatile regulators of gene expression in vertebrate cells,” Biochemical Society Transactions, vol. 37, part 5, pp. 931–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Lee, S. S. Ajay, I. Y. Jong et al., “New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites,” Genome Research, vol. 19, no. 7, pp. 1175–1183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Brummer and J. Hausser, “MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation,” BioEssays, vol. 36, no. 6, pp. 617–626, 2014. View at Publisher · View at Google Scholar
  60. A. P. Carroll, G. J. Goodall, and B. Liu, “Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches,” Wiley Interdisciplinary Reviews RNA, vol. 5, no. 3, pp. 361–379, 2014. View at Publisher · View at Google Scholar
  61. X. Wang, “Composition of seed sequence is a major determinant of microRNA targeting patterns,” Bioinformatics, vol. 30, no. 10, pp. 1377–1383, 2014. View at Publisher · View at Google Scholar
  62. U. Ohler, S. Yekta, L. P. Lim, D. P. Bartel, and C. B. Burge, “Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification,” RNA, vol. 10, no. 9, pp. 1309–1322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. W. H. Majoros and U. Ohler, “Spatial preferences of microRNA targets in 3′ untranslated regions,” BMC Genomics, vol. 8, article 152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Brodersen and O. Voinnet, “Revisiting the principles of microRNA target recognition and mode of action,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 141–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. E. J. Finnegan and M. A. Matzke, “The small RNA world,” Journal of Cell Science, vol. 116, no. 23, pp. 4689–4693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. S. I. S. Grewal and S. C. R. Elgin, “Transcription and RNA interference in the formation of heterochromatin,” Nature, vol. 447, no. 7143, pp. 399–406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. R. Fabian, N. Sonenberg, and W. Filipowicz, “Regulation of mRNA translation and stability by microRNAs,” Annual Review of Biochemistry, vol. 79, pp. 351–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. A. Valencia-Sanchez, J. Liu, G. J. Hannon, and R. Parker, “Control of translation and mRNA degradation by miRNAs and siRNAs,” Genes and Development, vol. 20, no. 5, pp. 515–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. N. L. Garneau, J. Wilusz, and C. J. Wilusz, “The highways and byways of mRNA decay,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 113–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Bagga, J. Bracht, S. Hunter et al., “Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation,” Cell, vol. 122, no. 4, pp. 553–563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Mathonnet, M. R. Fabian, Y. V. Svitkin et al., “MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F,” Science, vol. 317, no. 5845, pp. 1764–1767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Iwasaki and Y. Tomari, “Argonaute-mediated translational repression (and activation),” Fly, vol. 3, no. 3, pp. 204–206, 2009. View at Google Scholar · View at Scopus
  73. A. Eulalio, E. Huntzinger, and E. Izaurralde, “Getting to the root of miRNA-mediated gene silencing,” Cell, vol. 132, no. 1, pp. 9–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Wang, A. Yanez, and C. D. Novina, “MicroRNA-repressed mRNAs contain 40S but not 60S components,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5343–5348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. T. P. Chendrimada, K. J. Finn, X. Ji et al., “MicroRNA silencing through RISC recruitment of eIF6,” Nature, vol. 447, no. 7146, pp. 823–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. X. C. Ding and H. Großhans, “Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins,” The EMBO Journal, vol. 28, no. 3, pp. 213–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. R. S. Pillai, S. N. Bhattacharyya, and W. Filipowicz, “Repression of protein synthesis by miRNAs: how many mechanisms?” Trends in Cell Biology, vol. 17, no. 3, pp. 118–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Eystathioy, A. Jakymiw, E. K. L. Chan, B. Séraphin, N. Cougot, and M. J. Fritzler, “The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies,” RNA, vol. 9, no. 10, pp. 1171–1173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. M. A. Andrei, D. Ingelfinger, R. Heintzmann, T. Achsel, R. Rivera-Pomar, and R. Lührmann, “A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies,” RNA, vol. 11, no. 5, pp. 717–727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. G. L. Sen and H. M. Blau, “Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies,” Nature Cell Biology, vol. 7, no. 6, pp. 633–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Vasudevan and J. A. Steitz, “AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2,” Cell, vol. 128, no. 6, pp. 1105–1118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. K. R. Cordes, N. T. Sheehy, M. P. White et al., “MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity,” Nature, vol. 460, no. 7256, pp. 705–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Li, J. Zhang, T. Yuan, and B. Ma, “miR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1,” Tumour Biology, 2014. View at Publisher · View at Google Scholar
  85. C. C. Lin, L. Z. Liu, J. B. Addison, W. F. Wonderlin, A. V. Ivanov, and J. M. Ruppert, “A KLF4-miRNA-206 autoregulatory feedback loop can promote or inhibit protein translation depending upon cell context,” Molecular and Cellular Biology, vol. 31, no. 12, pp. 2513–2527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: microRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. L. C. Li, S. T. Okino, H. Zhao et al., “Small dsRNAs induce transcriptional activation in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17337–17342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. H. A. Coller, L. Sang, and J. M. Roberts, “A new description of cellular quiescence.,” PLoS Biology, vol. 4, no. 3, article e83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. S. S. Truesdell, R. D. Mortensen, M. Seo et al., “MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP,” Scientific Reports, vol. 2, article 842, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. M. Fu, Z. X. Yu, V. J. Ferrans, and G. G. Meadows, “Tyrosine and phenylalanine restriction induces G0/G1 cell cycle arrest in murine melanoma in vitro and in vivo,” Nutrition and Cancer, vol. 29, no. 2, pp. 104–113, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Küppers, C. Ittrich, D. Faust, and C. Dietrich, “The transcriptional programme of contact-inhibition,” Journal of Cellular Biochemistry, vol. 110, no. 5, pp. 1234–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Furuno, A. Kawasaki, and N. Sagata, “Expression of cell-cycle regulators during Xenopus oogenesis,” Gene Expression Patterns, vol. 3, no. 2, pp. 165–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. R. S. Pillai, C. G. Artus, and W. Filipowicz, “Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis,” RNA, vol. 10, no. 10, pp. 1518–1525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Turchinovich and B. Burwinkel, “Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma,” RNA Biology, vol. 9, no. 8, pp. 1066–1075, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. Z. Yang, A. Jakymiw, M. R. Wood et al., “GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation,” Journal of Cell Science, vol. 117, part 23, pp. 5567–5578, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. S. N. Bhattacharyya and W. Filipowicz, “Argonautes and company: sailing against the wind,” Cell, vol. 128, no. 6, pp. 1027–1028, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. J. Moore and N. J. Proudfoot, “Pre-mRNA processing reaches back to transcription and ahead to translation,” Cell, vol. 136, no. 4, pp. 688–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Weinmann, J. Höck, T. Ivacevic et al., “Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs,” Cell, vol. 136, no. 3, pp. 496–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Lund, M. D. Sheets, S. B. Imboden, and J. E. Dahlberg, “Limiting ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis,” Genes & Development, vol. 25, no. 11, pp. 1121–1131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. R. D. Mortensen, M. Serra, J. A. Steitz, and S. Vasudevan, “Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs),” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 20, pp. 8281–8286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Vasudevan, Y. Tong, and J. A. Steitz, “Cell cycle control of microRNA-mediated translation regulation,” Cell Cycle, vol. 7, no. 11, pp. 1545–1549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Ceman, V. Brown, and S. T. Warren, “Isolation of an FMRP-associated messenger ribonucleoprotein particle and identification of nucleolin and the fragile X-related proteins as components of the complex,” Molecular and Cellular Biology, vol. 19, no. 12, pp. 7925–7932, 1999. View at Google Scholar · View at Scopus
  103. H. H. Kim, Y. Kuwano, S. Srikantan, E. K. Lee, J. L. Martindale, and M. Gorospe, “HuR recruits let-7/RISC to repress c-Myc expression,” Genes and Development, vol. 23, no. 15, pp. 1743–1748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. S. U. Mertens-Talcott, S. Chintharlapalli, X. Li, and S. Safe, “The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells,” Cancer Research, vol. 67, no. 22, pp. 11001–11011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. C. L. Jopling, S. Schütz, and P. Sarnow, “Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome,” Cell Host and Microbe, vol. 4, no. 1, pp. 77–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Chang, E. Nicolas, D. Marks et al., “miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1,” RNA Biology, vol. 1, no. 2, pp. 106–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Niepmann, “Activation of hepatitis C virus translation by a liver-specific microRNA,” Cell Cycle, vol. 8, no. 10, pp. 1473–1477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. J. I. Henke, D. Goergen, J. Zheng et al., “microRNA-122 stimulates translation of hepatitis C virus RNA,” The EMBO Journal, vol. 27, no. 24, pp. 3300–3310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. E. S. Machlin, P. Sarnow, and S. M. Sagan, “Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 8, pp. 3193–3198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Li, T. Masaki, D. Yamane, D. R. McGivern, and S. M. Lemon, “Competing and noncompeting activities of miR-122 and the 5' exonuclease Xrn1 in regulation of hepatitis C virus replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 5, pp. 1881–1886, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Shimakami, D. Yamane, R. K. Jangra et al., “Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 3, pp. 941–946, 2012. View at Publisher · View at Google Scholar · View at Scopus
  112. K. D. Conrad and M. Niepmann, “The role of microRNAs in hepatitis C virus RNA replication,” Archives of Virology, vol. 159, no. 5, pp. 849–862, 2014. View at Publisher · View at Google Scholar
  113. O. Meyuhas, “Synthesis of the translational apparatus is regulated at the translational level,” European Journal of Biochemistry, vol. 267, no. 21, pp. 6321–6330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Levy, D. Avni, N. Hariharan, R. P. Perry, and O. Meyuhas, “Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3319–3323, 1991. View at Publisher · View at Google Scholar · View at Scopus
  115. N. Terada, H. R. Patel, K. Takase, K. Kohno, A. C. Nairn, and E. W. Gelfand, “Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 24, pp. 11477–11481, 1994. View at Publisher · View at Google Scholar · View at Scopus
  116. T. R. Rao and L. I. Slobin, “Regulation of the utilization of mRNA for eucaryotic elongation factor Tu in Friend erythroleukemia cells,” Molecular and Cellular Biology, vol. 7, no. 2, pp. 687–697, 1987. View at Google Scholar · View at Scopus
  117. D. Avni, S. Shama, F. Loreni, and O. Meyuhas, “Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element,” Molecular and Cellular Biology, vol. 14, no. 6, pp. 3822–3833, 1994. View at Google Scholar · View at Scopus
  118. M. G. Agrawal and L. H. Bowman, “Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation,” The Journal of Biological Chemistry, vol. 262, no. 10, pp. 4868–4875, 1987. View at Google Scholar · View at Scopus
  119. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. U. A. Ørom, F. C. Nielsen, and A. H. Lund, “MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation,” Molecular Cell, vol. 30, no. 4, pp. 460–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. L. Wei, “Retinoids and receptor interacting protein 140 (RIP140) in gene regulation,” Current Medicinal Chemistry, vol. 11, no. 12, pp. 1527–1532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Tsai, Y. Lin, and L. Wei, “MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression,” Biochemical Journal, vol. 424, no. 3, pp. 411–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. A. M. Powelka, A. Seth, J. V. Virbasius et al., “Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes,” The Journal of Clinical Investigation, vol. 116, no. 1, pp. 125–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. C. A. Chen and A. Shyu, “AU-rich elements: characterization and importance in mRNA degradation,” Trends in Biochemical Sciences, vol. 20, no. 11, pp. 465–470, 1995. View at Publisher · View at Google Scholar · View at Scopus
  125. C. J. Wilusz, M. Wormington, and S. W. Peltz, “The cap-to-tail guide to mRNA turnover,” Nature Reviews Molecular Cell Biology, vol. 2, no. 4, pp. 237–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Lykke-Andersen and E. Wagner, “Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1,” Genes and Development, vol. 19, no. 3, pp. 351–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. Q. Jing, S. Huang, S. Guth et al., “Involvement of microRNA in AU-rich element-mediated mRNA instability,” Cell, vol. 120, no. 5, pp. 623–634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. C. von Roretz and I. Gallouzi, “Decoding ARE-mediated decay: is microRNA part of the equation?” Journal of Cell Biology, vol. 181, no. 2, pp. 189–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. F. Ma, X. Liu, D. Li et al., “MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation,” Journal of Immunology, vol. 184, no. 11, pp. 6053–6059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. A. J. Murphy, P. M. Guyre, and P. A. Pioli, “Estradiol suppresses NF-κB activation through coordinated regulation of let-7a and miR-125b in primary human macrophages,” The Journal of Immunology, vol. 184, no. 9, pp. 5029–5037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. A. M. Eiring, J. G. Harb, P. Neviani et al., “miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts,” Cell, vol. 140, no. 5, pp. 652–665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, “Relief of microRNA-mediated translational repression in human cells subjected to stress,” Cell, vol. 125, no. 6, pp. 1111–1124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. S. I. Ashraf, A. L. McLoon, S. M. Sclarsic, and S. Kunes, “Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila,” Cell, vol. 124, no. 1, pp. 191–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, and W. Filipowicz, “Stress-induced Reversal of microRNA repression and mRNA P-body localization in human cells,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 71, pp. 513–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Ivan, A. L. Harris, F. Martelli, and R. Kulshreshtha, “Hypoxia response and microRNAs: no longer two separate worlds,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5a, pp. 1426–1431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. K. A. Padgett, R. Y. Lan, P. C. Leung et al., “Primary biliary cirrhosis is associated with altered hepatic microRNA expression,” Journal of Autoimmunity, vol. 32, no. 3-4, pp. 246–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. M. L. Chen, L. S. Liang, and X. K. Wang, “MiR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1,” Clinical and Experimental Metastasis, vol. 29, no. 5, pp. 457–469, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. L. García-Segura, M. Pérez-Andrade, J. Miranda-Ríos, and C. Piso, “The emerging role of MicroRNAs in the regulation of gene expression by nutrients,” Journal of Nutrigenetics and Nutrigenomics, vol. 6, no. 1, pp. 16–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  139. E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill, and E. N. Olson, “Control of stress-dependent cardiac growth and gene expression by a microRNA,” Science, vol. 316, no. 5824, pp. 575–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. G. T. Bommer, I. Gerin, Y. Feng et al., “p53-mediated activation of miRNA34 candidate tumor-suppressor genes,” Current Biology, vol. 17, no. 15, pp. 1298–1307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. T.-C. Chang, E. A. Wentzel, O. A. Kent et al., “Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 745–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. N. Raver-Shapira, E. Marciano, E. Meiri et al., “Transcriptional activation of miR-34a contributes to p53-mediated apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 731–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. B. Wang, Y. F. Sun, N. Song et al., “MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L,” Plant Physiology and Biochemistry C, vol. 80, pp. 90–96, 2014. View at Google Scholar
  145. M. Hatzoglou, J. Fernandez, I. Yaman, and E. Closs, “Regulation of cationic amino acid transport: the story of the CAT-1 transporter,” Annual Review of Nutrition, vol. 24, pp. 377–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. I. Yaman, J. Fernandez, B. Sarkar et al., “Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 41539–41546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. I. Yaman, J. Fernandez, H. Liu et al., “The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader,” Cell, vol. 113, no. 4, pp. 519–531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. C. M. Brennan and J. A. Steitz, “HuR and mRNA stability,” Cellular and Molecular Life Sciences, vol. 58, no. 2, pp. 266–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  149. V. Katsanou, O. Papadaki, S. Milatos et al., “HuR as a negative posttranscriptional modulator in inflammation,” Molecular Cell, vol. 19, no. 6, pp. 777–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Lal, T. Kawai, X. Yang, K. Mazan-Mamczarz, and M. Gorospe, “Antiapoptotic function of RNA-binding protein HuR effected through prothymosin α,” The EMBO Journal, vol. 24, no. 10, pp. 1852–1862, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Mazan-Mamczarz, P. R. Hagner, S. Corl et al., “Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype,” Oncogene, vol. 27, no. 47, pp. 6151–6163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. S. S.-Y. Peng, C. A. Chen, N. Xu, and A. Shyu, “RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein,” The EMBO Journal, vol. 17, no. 12, pp. 3461–3470, 1998. View at Publisher · View at Google Scholar · View at Scopus
  153. X. C. Fan and J. A. Steitz, “Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs,” The EMBO Journal, vol. 17, no. 12, pp. 3448–3460, 1998. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Kedde, M. J. Strasser, B. Boldajipour et al., “RNA-binding protein Dnd1 inhibits microRNA access to target mRNA,” Cell, vol. 131, no. 7, pp. 1273–1286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. J. Yoon, K. Abdelmohsen, S. Srikantan et al., “LincRNA-p21 suppresses target mRNA translation,” Molecular Cell, vol. 47, no. 4, pp. 648–655, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. E. A. Gibb, E. A. Vucic, K. S. S. Enfield et al., “Human cancer long non-coding RNA transcriptomes,” PLoS ONE, vol. 6, no. 10, Article ID e25915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. J. H. Yoon, K. Abdelmohsen, and M. Gorospe, “Posttranscriptional gene regulation by long noncoding RNA,” Journal of Molecular Biology, vol. 425, no. 19, pp. 3723–3730, 2013. View at Publisher · View at Google Scholar
  158. Q. Zhang and K.-T. Jeang, “Long noncoding RNAs and viral infections,” BioMedicine, vol. 3, no. 1, pp. 34–42, 2013. View at Publisher · View at Google Scholar · View at Scopus
  159. T. Nagano and P. Fraser, “No-nonsense functions for long noncoding RNAs,” Cell, vol. 145, no. 2, pp. 178–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Y. Ng and L. W. Stanton, “Long non-coding RNAs in stem cell pluripotency,” Wiley Interdisciplinary Reviews: RNA, vol. 41, no. 1, pp. 121–128, 2013. View at Publisher · View at Google Scholar
  161. S. Loewer, M. N. Cabili, M. Guttman et al., “Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells,” Nature Genetics, vol. 42, no. 12, pp. 1113–1117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. Y. Wang, Z. Xu, J. Jiang et al., “Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal,” Developmental Cell, vol. 25, no. 1, pp. 69–80, 2013. View at Publisher · View at Google Scholar · View at Scopus
  163. E. C. Cheng and H. Lin, “Repressing the repressor: a lincRNA as a microRNA sponge in embryonic stem cell self-renewal,” Developmental Cell, vol. 25, no. 1, pp. 1–2, 2013. View at Publisher · View at Google Scholar · View at Scopus
  164. H. Zhu, F. Hu, R. Wang et al., “Arabidopsis argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development,” Cell, vol. 145, no. 2, pp. 242–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. T. Ghosh, K. Soni, V. Scaria, M. Halimani, C. Bhattacharjee, and B. Pillai, “MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic β-actin gene,” Nucleic Acids Research, vol. 36, no. 19, pp. 6318–6332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. G. M. Schratt, F. Tuebing, E. A. Nigh et al., “A brain-specific microRNA regulates dendritic spine development,” Nature, vol. 439, no. 7074, pp. 283–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. S. Khudayberdiev, R. Fiore, and G. Schratt, “MicroRNA as modulators of neuronal responses,” Communicative & Integrative Biology, vol. 2, no. 5, pp. 411–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. V. Glorian, G. Maillot, S. Polès, J. S. Iacovoni, G. Favre, and S. Vagner, “HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis,” Cell Death and Differentiation, vol. 18, no. 11, pp. 1692–1701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. S. Srikantan, K. Abdelmohsen, E. K. Lee et al., “Translational control of TOP2A Influences doxorubicin efficacy,” Molecular and Cellular Biology, vol. 31, no. 18, pp. 3790–3801, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman, and P. P. Pandolfi, “A coding-independent function of gene and pseudogene mRNAs regulates tumour biology,” Nature, vol. 465, no. 7301, pp. 1033–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. S. Gehrke, Y. Imai, N. Sokol, and B. Lu, “Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression,” Nature, vol. 466, no. 7306, pp. 637–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Chan, G. Ramaswamy, E. Choi, and F. J. Slack, “Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans,” RNA, vol. 14, no. 10, pp. 2104–2114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. M. R. Jones, L. J. Quinton, M. T. Blahna et al., “Zcchc11-dependent uridylation of microRNA directs cytokine expression,” Nature Cell Biology, vol. 11, no. 9, pp. 1157–1163, 2009. View at Publisher · View at Google Scholar · View at Scopus