Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2015, Article ID 198560, 15 pages
http://dx.doi.org/10.1155/2015/198560
Research Article

Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus, and Pasteurella

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5

Received 5 November 2014; Revised 19 January 2015; Accepted 26 January 2015

Academic Editor: John Parkinson

Copyright © 2015 Sohail Naushad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera.