Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2015, Article ID 735845, 17 pages
http://dx.doi.org/10.1155/2015/735845
Research Article

Validation of Simple Sequence Length Polymorphism Regions of Commonly Used Mouse Strains for Marker Assisted Speed Congenics Screening

1Mouse Genome Engineering Core Facility, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5915, USA
2Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
3Mouse Biology Program, University of California, Davis, 2795 2nd Street, Davis, CA 95618, USA

Received 1 November 2014; Revised 30 December 2014; Accepted 10 January 2015

Academic Editor: Mohamed Salem

Copyright © 2015 Channabasavaiah B. Gurumurthy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Cao, X. Liu, N. Deng et al., “Congenic mice provide evidence for a genetic locus that modulates spontaneous arthritis caused by deficiency of IL-1RA,” PLoS ONE, vol. 8, no. 6, Article ID e68158, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Davie, J. E. Maglione, C. K. Manner et al., “Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice,” Transgenic Research, vol. 16, no. 2, pp. 193–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Doetschman, “Influence of genetic background on genetically engineered mouse phenotypes,” Methods in Molecular Biology, vol. 530, pp. 423–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. E. Fleming, C. C. Holden, S. Tomatsu et al., “Mouse strain differences determine severity of iron accumulation in Hfe knockout model of hereditary hemochromatosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2707–2711, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. G. D. Gale, R. D. Yazdi, A. H. Khan, A. J. Lusis, R. C. Davis, and D. J. Smith, “A genome-wide panel of congenic mice reveals widespread epistasis of behavior quantitative trait loci,” Molecular Psychiatry, vol. 14, no. 6, pp. 631–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. T. D. Heiman-Patterson, R. B. Sher, E. A. Blankenhorn et al., “Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers,” Amyotrophic Lateral Sclerosis, vol. 12, no. 2, pp. 79–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. R. Johnson, Q. Y. Zheng, and K. Noben-Trauth, “Strain background effects and genetic modifiers of hearing in mice,” Brain Research, vol. 1091, no. 1, pp. 79–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. B. Maclennan, B. M. Anderson, and D. W. L. Ma, “Differential mammary gland development in FVB and C57Bl/6 mice: implications for breast cancer research,” Nutrients, vol. 3, no. 11, pp. 929–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Montagutelli, “Effect of the genetic background on the phenotype of mouse mutations,” Journal of the American Society of Nephrology, vol. 11, no. 16, pp. S101–S105, 2000. View at Google Scholar · View at Scopus
  10. J. Puccini, L. Dorstyn, and S. Kumar, “Genetic background and tumour susceptibility in mouse models,” Cell Death and Differentiation, vol. 20, no. 7, p. 964, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Siuciak, S. A. McCarthy, D. S. Chapin, A. N. Martin, J. F. Harms, and C. J. Schmidt, “Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background,” Neuropharmacology, vol. 54, no. 2, pp. 417–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Thifault, R. Lalonde, N. Sanon, and P. Hamet, “Comparisons between C57BL/6J and A/J mice in motor activity and coordination, hole-poking, and spatial learning,” Brain Research Bulletin, vol. 58, no. 2, pp. 213–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. Auerbach, R. Norinsky, W. Ho et al., “Strain-dependent differences in the efficiency of transgenic mouse production,” Transgenic Research, vol. 12, no. 1, pp. 59–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Glaser, K. Anastassiadis, and A. F. Stewart, “Current issues in mouse genome engineering,” Nature Genetics, vol. 37, no. 11, pp. 1187–1193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Beier, “New genetic resources for mammalian developmental biologists,” F1000 Biology Reports, vol. 2, no. 1, article 72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Inoue, Y. Sakuraba, H. Motegi et al., “A series of maturity onset diabetes of the young, type 2 (MODY2) mouse models generated by a large-scale ENU mutagenesis program,” Human Molecular Genetics, vol. 13, no. 11, pp. 1147–1157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Masuya, K. Shimizu, H. Sezutsu et al., “Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI),” Human Molecular Genetics, vol. 14, no. 5, pp. 575–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Cendán, J. M. Pujalte, E. Portillo-Salido, L. Montoliu, and J. M. Baeyens, “Formalin-induced pain is reduced in σ1 receptor knockout mice,” European Journal of Pharmacology, vol. 511, no. 1, pp. 73–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Markel, P. Shu, C. Ebeling et al., “Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains,” Nature Genetics, vol. 17, no. 3, pp. 280–284, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Wakeland, L. Morel, K. Achey, M. Yui, and J. Longmate, “Speed congenics: a classic technique in the fast lane (relatively speaking),” Immunology Today, vol. 18, no. 10, pp. 472–477, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. S. C. Collins, R. H. Wallis, K. Wallace, M. T. Bihoreau, and D. Gauguier, “Marker-assisted congenic screening (MACS): a database tool for the efficient production and characterization of congenic lines,” Mammalian Genome, vol. 14, no. 5, pp. 350–356, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Estill and J. A. Garcia, “A marker assisted selection protocol (MASP) to generate C57BL/6J or 129S6/SvEvTac speed congenic or consomic strains,” Genesis, vol. 28, no. 3-4, pp. 164–166, 2000. View at Publisher · View at Google Scholar
  23. C. R. Farber, P. M. Corva, and J. F. Medrano, “Genome-wide isolation of growth and obesity QTL using mouse speed congenic strains,” BMC Genomics, vol. 7, article 102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. O. A. Iakoubova, C. L. Olsson, K. M. Dains et al., “Microsatellite marker panels for use in high-throughput genotyping of mouse crosses,” Physiological Genomics, vol. 2000, no. 3, pp. 145–148, 2000. View at Google Scholar · View at Scopus
  25. N. Ogonuki, K. Inoue, M. Hirose et al., “A high-speed congenic strategy using first-wave male germ cells,” PLoS ONE, vol. 4, no. 3, Article ID e4943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Sakai, I. Miura, S. Yamada-Ishibashi et al., “Update of mouse microsatellite database of Japan (MMDBJ),” Experimental Animals, vol. 53, no. 2, pp. 151–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Suemizu, C. Yagihashi, T. Mizushima et al., “Establishing EGFP congenic mice in a NOD/Shi-scid IL2Rgnull (NOG) genetic background using a marker-assisted selection protocol (MASP),” Experimental Animals, vol. 57, no. 5, pp. 471–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Teppner, B. Aigner, E. Schreiner, M. Müller, and M. Windisch, “Polymorphic microsatellite markers in the outbred CFW and ICR stocks for the generation of speed congenic mice on C57BL/6 background,” Laboratory Animals, vol. 38, no. 4, pp. 406–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. D. Witmer, K. F. Doheny, M. K. Adams et al., “The development of a highly informative mouse Simple Sequence Length Polymorphism (SSLP) marker set and construction of a mouse family tree using parsimony analysis,” Genome Research, vol. 13, pp. 485–491, 2003. View at Publisher · View at Google Scholar
  30. C. Lamacchia, G. Palmer, and C. Gabay, “Discrimination of C57BL/6J Rj and 129S2/SvPasCrl inbred mouse strains by use of simple sequence length polymorphisms,” Journal of the American Association for Laboratory Animal Science, vol. 46, no. 2, pp. 21–24, 2007. View at Google Scholar · View at Scopus
  31. I. M. Neuhaus, C. S. Sommardahl, D. K. Johnson, and D. R. Beier, “Microsatellite DNA variants between the FVB/N and C3HeB/FeJLe and C57BL/6J mouse strains,” Mammalian Genome, vol. 8, no. 7, pp. 506–509, 1997. View at Publisher · View at Google Scholar
  32. N. J. Armstrong, T. C. Brodnicki, and T. P. Speed, “Mind the gap: analysis of marker-assisted breeding strategies for inbred mouse strains,” Mammalian Genome, vol. 17, no. 4, pp. 273–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Goto, M. Ebukuro, and T. Itoh, “Microsatellite-directed selection of breeders for the next backcross generation by using a minimal number of loci,” Comparative Medicine, vol. 55, no. 1, pp. 34–36, 2005. View at Google Scholar · View at Scopus
  34. P. M. Petkov, Y. Ding, M. A. Cassell et al., “An efficient SNP system for mouse genome scanning and elucidating strain relationships,” Genome Research, vol. 14, no. 9, pp. 1806–1811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. M. Petkov, M. A. Cassell, E. E. Sargent et al., “Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse,” Genomics, vol. 83, no. 5, pp. 902–911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Tsang, Z. Sun, B. Luke et al., “A comprehensive SNP-based genetic analysis of inbred mouse strains,” Mammalian Genome, vol. 16, no. 7, pp. 476–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. D. Gorham, M. S. Ranson, J. C. Smith, B. J. Gorham, and K.-A. Muirhead, “1 + 1 = 3: development and validation of a SNP-based algorithm to identify genetic contributions from three distinct inbred mouse strains,” Journal of Biomolecular Techniques, vol. 23, no. 4, pp. 136–146, 2012. View at Publisher · View at Google Scholar