Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2016 (2016), Article ID 9185496, 11 pages
http://dx.doi.org/10.1155/2016/9185496
Research Article

Lncident: A Tool for Rapid Identification of Long Noncoding RNAs Utilizing Sequence Intrinsic Composition and Open Reading Frame Information

1College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
2Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, Zhuhai 519041, China

Received 5 August 2016; Revised 24 October 2016; Accepted 28 November 2016

Academic Editor: Graziano Pesole

Copyright © 2016 Siyu Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Rinn and H. Y. Chang, “Genome regulation by long noncoding RNAs,” Annual Review of Biochemistry, vol. 81, pp. 145–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J.-W. Nam and D. P. Bartel, “Long noncoding RNAs in C. elegans,” Genome Research, vol. 22, no. 12, pp. 2529–2540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Liu, C. Jung, J. Xu et al., “Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis,” Plant Cell, vol. 24, no. 11, pp. 4333–4345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Kapranov, A. T. Willingham, and T. R. Gingeras, “Genome-wide transcription and the implications for genomic organization,” Nature Reviews Genetics, vol. 8, no. 6, pp. 413–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Khalil, M. Guttman, M. Huarte et al., “Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11667–11672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. T. da Rocha, V. Boeva, M. Escamilla-Del-Arenal et al., “Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome,” Molecular Cell, vol. 53, no. 2, pp. 301–316, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. V. O'Leary, S. V. Ovsepian, L. G. Carrascosa et al., “PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation,” Cell Reports, vol. 11, no. 3, pp. 474–485, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Pennisi, “ENCODE project writes eulogy for junk DNA,” Science, vol. 337, no. 6099, pp. 1159–1161, 2012. View at Google Scholar
  9. G. Chen, Z. Wang, D. Wang et al., “LncRNADisease: a database for long-non-coding RNA-associated diseases,” Nucleic Acids Research, vol. 41, no. 1, pp. D983–D986, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ning, J. Zhang, P. Wang et al., “Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers,” Nucleic Acids Research, vol. 44, no. 1, pp. D980–D985, 2016. View at Publisher · View at Google Scholar
  11. L. Kong, Y. Zhang, Z.-Q. Ye et al., “CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine,” Nucleic Acids Research, vol. 35, supplement 2, pp. W345–W349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Wang, H. J. Park, S. Dasari, S. Wang, J.-P. Kocher, and W. Li, “CPAT: coding-potential assessment tool using an alignment-free logistic regression model,” Nucleic Acids Research, vol. 41, no. 6, article e74, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Fickett, “Recognition of protein coding regions in DNA sequences,” Nucleic Acids Research, vol. 10, no. 17, pp. 5303–5318, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. J. W. Fickett and C.-S. Tung, “Assessment of protein coding measures,” Nucleic Acids Research, vol. 20, no. 24, pp. 6441–6450, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Sun, H. Luo, D. Bu et al., “Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts,” Nucleic Acids Research, vol. 41, no. 17, p. e166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Li, J. Zhang, and Z. Zhou, “PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme,” BMC Bioinformatics, vol. 15, no. 1, article no. 311, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. X.-N. Fan and S.-W. Zhang, “lncRNA-MFDL: identification of human long non-coding RNAs by fusing multiple features and using deep learning,” Molecular BioSystems, vol. 11, no. 3, pp. 892–897, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Derrien, R. Johnson, G. Bussotti et al., “The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression,” Genome Research, vol. 22, no. 9, pp. 1775–1789, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Harrow, A. Frankish, J. M. Gonzalez et al., “GENCODE: the reference human genome annotation for the ENCODE project,” Genome Research, vol. 22, no. 9, pp. 1760–1774, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Harrow, F. Denoeud, A. Frankish et al., “GENCODE: producing a reference annotation for ENCODE,” Genome biology, vol. 7, no. 5, article no. R41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Achawanantakun, J. Chen, Y. Sun, and Y. Zhang, “LncRNA-ID: long non-coding RNA IDentification using balanced random forests,” Bioinformatics, vol. 31, no. 24, pp. 3897–3905, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Mudge and J. Harrow, “Creating reference gene annotation for the mouse C57BL6/J genome assembly,” Mammalian Genome, vol. 26, no. 9-10, pp. 366–378, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Yates, W. Akanni, M. R. Amode et al., “Ensembl 2016,” Nucleic Acids Research, vol. 44, pp. 710–716, 2016. View at Publisher · View at Google Scholar
  24. J. M. Cherry, C. Ball, S. Weng et al., “Genetic and physical maps of Saccharomyces cerevisiae,” Nature, vol. 387, no. 6632, pp. 67–73, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Miura, N. Kawaguchi, J. Sese et al., “A large-scale full-length cDNA analysis to explore the budding yeast transcriptome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17846–17851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Liti, D. M. Carter, A. M. Moses et al., “Population genomics of domestic and wild yeasts,” Nature, vol. 458, no. 7236, pp. 337–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer, 2009.
  28. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar
  29. J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960. View at Publisher · View at Google Scholar
  30. B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu, “UniRef: comprehensive and non-redundant UniProt reference clusters,” Bioinformatics, vol. 23, no. 10, pp. 1282–1288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Charif, J. R. Lobry, A. Necsulea, L. Palmeira, S. Penel, and G. Perriere, “SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis,” in Structural Approaches to Sequence Evolution, pp. 207–232, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar
  32. A. Weingessel, F. Leisch, D. Meyer, E. Dimitriadou, and K. Hornik, “e1071: misc functions of the department of statistics, probability theory group (Formerly: E1071), TU Wien,” 2015, https://cran.r-project.org/package=e1071.
  33. H. Wickham, P. Danenberg, and M. Eugster, roxygen2: In-Source Documentation for R, 2015, https://cran.r-project.org/package=roxygen2.
  34. A. Coghlan, “Little Book of R for Bioinformatics,” http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/index.html.