Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2017, Article ID 8724304, 14 pages
https://doi.org/10.1155/2017/8724304
Research Article

Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome

1Los Alamos National Laboratory, Biosciences Division, Genome Science, Los Alamos, NM 87545, USA
2School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
3LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
4Tauri Group, LLC, Alexandria, VA 22310, USA
5Defense Biological Product Assurance Office, 110 Thomas Johnson Drive, Frederick, MD 21702, USA

Correspondence should be addressed to Shanmuga Sozhamannan; lim.liam@rtc.nannamahzos.agumnahs

Received 21 February 2017; Revised 15 June 2017; Accepted 22 June 2017; Published 29 August 2017

Academic Editor: Graziano Pesole

Copyright © 2017 Gary Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Prozorov, “Additional chromosomes in bacteria: properties and origin,” Mikrobiologiia, vol. 77, no. 4, pp. 437–447, 2008. View at Google Scholar
  2. M. Trucksis, J. Michalski, Y. K. Deng, and J. B. Kaper, “The Vibrio cholerae genome contains two unique circular chromosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14464–14469, 1998. View at Google Scholar
  3. J. F. Heidelberg, J. A. Eisen, W. C. Nelson et al., “DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae,” Nature, vol. 406, no. 6795, pp. 477–483, 2000. View at Google Scholar
  4. K. Okada, T. Iida, K. Kita-Tsukamoto, and T. Honda, “Vibrios commonly possess two chromosomes,” Journal of Bacteriology, vol. 187, no. 2, pp. 752–757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. S. Egan, M. A. Fogel, and M. K. Waldor, “Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes,” Molecular Microbiology, vol. 56, no. 5, pp. 1129–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. K. Jha, J. H. Baek, T. Venkova-Canova, and D. K. Chattoraj, “Chromosome dynamics in multichromosome bacteria,” Biochimica et Biophysica Acta, vol. 1819, no. 7, pp. 826–829, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. Val, A. Soler-Bistué, M. J. Bland, and D. Mazel, “Management of multipartite genomes: the Vibrio cholerae model,” Current Opinion in Microbiology, vol. 22, pp. 120–126, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Venkova-Canova and D. K. Chattoraj, “Transition from a plasmid to a chromosomal mode of replication entails additional regulators,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 15, pp. 6199–6204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. E. Cameron, J. M. Urbach, and J. J. Mekalanos, “A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 25, pp. 8736–8741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Chao, J. R. Pritchard, Y. J. Zhang et al., “High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data,” Nucleic Acids Research, vol. 41, no. 19, pp. 9033–9048, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. H. D. Kamp, B. Patimalla-Dipali, D. W. Lazinski, F. Wallace-Gadsden, and A. Camilli, “Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle,” PLoS Pathogens, vol. 9, no. 12, article e1003800, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Xu, M. Dziejman, and J. J. Mekalanos, “Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1286–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. S. Merrell, S. M. Butler, F. Qadri et al., “Host-induced epidemic spread of the cholera bacterium,” Nature, vol. 417, no. 6889, pp. 642–645, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. S. Egan and M. K. Waldor, “Distinct replication requirements for the two Vibrio cholerae chromosomes,” Cell, vol. 114, no. 4, pp. 521–530, 2003. View at Google Scholar
  15. S. Duigou, K. G. Knudsen, O. Skovgaard, E. S. Egan, A. Løbner-Olesen, and M. K. Waldor, “Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB,” Journal of Bacteriology, vol. 188, no. 17, pp. 6419–6424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Demarre and D. K. Chattoraj, “DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle,” PLoS Genetics, vol. 6, no. 5, article e1000939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Duigou, Y. Yamaichi, and M. K. Waldor, “ATP negatively regulates the initiator protein of Vibrio cholerae chromosome II replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10577–10582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Rasmussen, R. B. Jensen, and O. Skovgaard, “The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle,” The EMBO Journal, vol. 26, no. 13, pp. 3124–3131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Stokke, T. Waldminghaus, and K. Skarstad, “Replication patterns and organization of replication forks in Vibrio cholerae,” Microbiology, vol. 157, Part 3, pp. 695–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Val, M. Marbouty, F. de Lemos Martins et al., “A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae,” Science Advances, vol. 2, no. 4, article e1501914, 2016. View at Publisher · View at Google Scholar
  21. J. H. Baek and D. K. Chattoraj, “Chromosome I controls chromosome II replication in Vibrio cholerae,” PLoS Genetics, vol. 10, no. 2, article e1004184, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. A. David, G. Demarre, L. Muresan, E. Paly, F. X. Barre, and C. Possoz, “The two cis-acting sites, parS1 and oriC1, contribute to the longitudinal organisation of Vibrio cholerae chromosome I,” PLoS Genetics, vol. 10, no. 7, article e1004448, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Livny, Y. Yamaichi, and M. K. Waldor, “Distribution of centromere-like parS sites in bacteria: insights from comparative genomics,” Journal of Bacteriology, vol. 189, no. 23, pp. 8693–8703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Yamaichi, M. A. Fogel, S. M. McLeod, M. P. Hui, and M. K. Waldor, “Distinct centromere-like parS sites on the two chromosomes of Vibrio spp,” Journal of Bacteriology, vol. 189, no. 14, pp. 5314–5324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Lesterlin, F. X. Barre, and F. Cornet, “Genetic recombination and the cell cycle: what we have learned from chromosome dimers,” Molecular Microbiology, vol. 54, no. 5, pp. 1151–1160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Val, S. P. Kennedy, M. El Karoui, L. Bonné, F. Chevalier, and F. X. Barre, “FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae,” PLoS Genetics, vol. 4, no. 9, article e1000201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Demarre, E. Galli, L. Muresan et al., “Differential management of the replication terminus regions of the two Vibrio cholerae chromosomes during cell division,” PLoS Genetics, vol. 10, no. 9, article e1004557, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. T. G. Bernhardt and P. A. de Boer, “SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli,” Molecular Cell, vol. 18, no. 5, pp. 555–564, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Yuan, Y. Yamaichi, and M. K. Waldor, “The three vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II,” Journal of Bacteriology, vol. 193, no. 3, pp. 611–619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Yamaichi, M. A. Fogel, and M. K. Waldor, “Par genes and the pathology of chromosome loss in Vibrio cholerae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 2, pp. 630–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Iqbal, A. M. Guérout, E. Krin, F. Le Roux, and D. Mazel, “Comprehensive functional analysis of the 18 Vibrio cholerae N16961 toxin-antitoxin systems substantiates their role in stabilizing the superintegron,” Journal of Bacteriology, vol. 197, no. 13, pp. 2150–2159, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Val, O. Skovgaard, M. Ducos-Galand, M. J. Bland, and D. Mazel, “Genome engineering in Vibrio cholerae: a feasible approach to address biological issues,” PLoS Genetics, vol. 8, no. 1, article e1002472, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. E. Val, S. P. Kennedy, A. J. Soler-Bistué et al., “Fuse or die: how to survive the loss of dam in Vibrio cholerae,” Molecular Microbiology, vol. 91, no. 4, pp. 665–678, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Shimada, E. Arakawa, K. Itoh et al., “Extended serotyping scheme for Vibrio cholerae,” Current Microbiology, vol. 28, no. 3, pp. 175–178, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Chapman, M. Henry, K. A. Bishop-Lilly et al., “Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity,” PLoS One, vol. 10, no. 3, article e0120311, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. S. L. Johnson, A. Khiani, K. A. Bishop-Lilly et al., “Complete genome assemblies for two single-chromosome Vibrio cholerae isolates, strains 1154-74 (serogroup O49) and 10432-62 (serogroup O27),” Genome Announcements, vol. 3, no. 3, 2015. View at Publisher · View at Google Scholar
  37. S. Bennett, “Solexa Ltd,” Pharmacogenomics, vol. 5, no. 4, pp. 433–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Margulies, M. Egholm, W. E. Altman et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, vol. 437, no. 7057, pp. 376–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly using de Bruijn graphs,” Genome Research, vol. 18, no. 5, pp. 821–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Foster, K. LaButti, S. Trong, C. Han, T. Brettin, and A. Lapidus, “POLISHER: A tool for using ultra short reads in genome sequence improvement,” 2009, - Report Number: LBNL-2792E Poster https://pubarchive.lbl.gov/islandora/object/ir%3A153560. View at Google Scholar
  41. S. Trong, K. LaButti, B. Foster, C. Han, T. Brettin, and A. Lapidus, “Gap resolution: a software package for improving Newbler genome assemblies,” in Sequencing, Finishing, Analysis in the Future Meeting, Santa Fe, NM, 2009.
  42. C. Han and P. Chain, “Finishing repeat regions automatically with Dupfinisher,” in Proceedings of the 2006 International Conference on Bioinformatics & Computational Biology, H. R. Arabnia and H. Valafar, Eds., pp. 141–146, CSREA Press, Las Vegas, NV, USA, 2006. View at Google Scholar
  43. P. E. Li, C. C. Lo, J. J. Anderson et al., “Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform,” Nucleic Acids Research, vol. 45, no. 1, pp. 67–80, 2017. View at Publisher · View at Google Scholar
  44. R. K. Aziz, D. Bartels, A. A. Best et al., “The RAST server: rapid annotations using subsystems technology,” BMC Genomics, vol. 9, p. 75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. C. McHardy, A. Goesmann, A. Pühler, and F. Meyer, “Development of joint application strategies for two microbial gene finders,” Bioinformatics, vol. 20, no. 10, pp. 1622–1631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. B. E. Suzek, M. D. Ermolaeva, M. Schreiber, and S. L. Salzberg, “A probabilistic method for identifying start codons in bacterial genomes,” Bioinformatics, vol. 17, no. 12, pp. 1123–1130, 2001. View at Google Scholar
  47. T. M. Lowe and S. R. Eddy, “tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence,” Nucleic Acids Research, vol. 25, no. 5, pp. 955–964, 1997. View at Google Scholar
  48. B. Boeckmann, A. Bairoch, R. Apweiler et al., “The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003,” Nucleic Acids Research, vol. 31, no. 1, pp. 365–370, 2003. View at Google Scholar
  49. A. Bateman, E. Birney, L. Cerruti et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 30, no. 1, pp. 276–280, 2002. View at Publisher · View at Google Scholar
  50. D. H. Haft, J. D. Selengut, and O. White, “The TIGRFAMs database of protein families,” Nucleic Acids Research, vol. 31, no. 1, pp. 371–373, 2003. View at Google Scholar
  51. N. J. Mulder, R. Apweiler, T. K. Attwood et al., “The InterPro database, 2003 brings increased coverage and new features,” Nucleic Acids Research, vol. 31, no. 1, pp. 315–318, 2003. View at Google Scholar
  52. M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000. View at Google Scholar
  53. R. L. Tatusov, N. D. Fedorova, J. D. Jackson et al., “The COG database: an updated version includes eukaryotes,” BMC Bioinformatics, vol. 4, p. 41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, pp. 3389–3402, 1997. View at Google Scholar
  55. A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg, “Fast algorithms for large-scale genome alignment and comparison,” Nucleic Acids Research, vol. 30, no. 11, pp. 2478–2483, 2002. View at Google Scholar
  56. S. Kurtz, A. Phillippy, A. L. Delcher et al., “Versatile and open software for comparing large genomes,” Genome Biology, vol. 5, no. 2, p. R12, 2004. View at Publisher · View at Google Scholar
  57. T. J. Carver, K. M. Rutherford, M. Berriman, M. A. Rajandream, B. G. Barrell, and J. Parkhill, “ACT: the Artemis Comparison Tool,” Bioinformatics, vol. 21, no. 16, pp. 3422-3423, 2005. View at Google Scholar
  58. S. Kurtz, A. Phillippy, A. L. Delcher et al., “Versatile and open software for comparing large genomes,” Genome Biology, vol. 5, article R12, 2004. View at Publisher · View at Google Scholar
  59. G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Research, vol. 27, pp. 573–580, 1999. View at Google Scholar
  60. P. E. Warburton, J. Giordano, F. Cheung, Y. Gelfand, and G. Benson, “Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes,” Genome Research, vol. 14, pp. 1861–1869, 2004. View at Publisher · View at Google Scholar
  61. Y. Zhou, Y. Liang, K. H. Lynch, J. J. Dennis, and D. S. Wishart, “PHAST: a fast phage search tool,” Nucleic Acids Research, vol. 39, pp. W347–W352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. B. K. Dhillon, M. R. Laird, J. A. Shay et al., “IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis,” Nucleic Acids Research, vol. 43, no. W1, pp. W104–W108, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Carver, N. Thomson, A. Bleasby, M. Berriman, and J. Parkhill, “DNAPlotter: circular and linear interactive genome visualization,” Bioinformatics, vol. 25, no. 1, pp. 119-120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. N. F. Alikhan, N. K. Petty, N. L. Ben Zakour, and S. A. Beatson, “BLAST ring image generator (BRIG): simple prokaryote genome comparisons,” BMC Genomics, vol. 12, p. 402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. A. E. Darling, B. Mau, and N. T. Perna, “ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement,” PLoS One, vol. 5, no. 6, article e11147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. P. S. Chain, D. V. Grafham, R. S. Fulton et al., “Genomics. Genome project standards in a new era of sequencing,” Science, vol. 326, no. 5950, pp. 236-237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Okada, M. Na-Ubol, W. Natakuathung et al., “Comparative genomic characterization of a Thailand-Myanmar isolate, MS6, of Vibrio cholerae O1 El Tor, which is phylogenetically related to a “US Gulf Coast” clone,” PLoS One, vol. 9, no. 6, article e98120, 2014. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Okada, A. Roobthaisong, W. Swaddiwudhipong, S. Hamada, and S. Chantaroj, “Vibrio cholerae O1 isolate with novel genetic background, Thailand-Myanmar,” Emerging Infectious Diseases, vol. 19, no. 6, pp. 1015–1017, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, “Mauve: multiple alignment of conserved genomic sequence with rearrangements,” Genome Research, vol. 14, no. 7, pp. 1394–1403, 2004. View at Google Scholar
  70. R. Barrangou, C. Fremaux, H. Deveau et al., “CRISPR provides acquired resistance against viruses in prokaryotes,” Science, vol. 315, no. 5819, pp. 1709–1712, 2007. View at Google Scholar
  71. M. Hawkins, S. Malla, M. J. Blythe, C. A. Nieduszynski, and T. Allers, “Accelerated growth in the absence of DNA replication origins,” Nature, vol. 503, no. 7477, pp. 544–547, 2013. View at Publisher · View at Google Scholar · View at Scopus