Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2018, Article ID 9025841, 12 pages
https://doi.org/10.1155/2018/9025841
Research Article

Metabolic Pathway Genes Associated with Susceptibility Genes to Coronary Artery Disease

1Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
2Department of Nephrology, Union Hospital, Fujian Medical University, Fuzhou, China

Correspondence should be addressed to Linlin Li; moc.anis@7991bbil

Received 4 September 2017; Revised 15 November 2017; Accepted 4 December 2017; Published 11 February 2018

Academic Editor: Margarita Hadzopoulou-Cladaras

Copyright © 2018 Heng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Calderon Jr., R. H. Schneider, C. N. Alexander, H. F. Myers, S. I. Nidich, and C. Haney, “Stress, stress reduction and hypercholesterolemia in African Americans: a review,” Ethnicity & disease, vol. 9, no. 3, pp. 451–462, 1998. View at Google Scholar
  2. M. Kivimäki, S. T. Nyberg, G. D. Batty et al., “Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data,” The Lancet, vol. 380, no. 9852, pp. 1491–1497, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Lozano, M. Naghavi, K. Foreman et al., “Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010,” The Lancet, vol. 380, no. 9859, pp. 2095–2128, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations,” International Journal of Cardiology, vol. 168, no. 2, pp. 934–945, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. H. C. McGill, C. A. McMahan, and S. S. Gidding, “Preventing heart disease in the 21st century: implications of the Pathobiological determinants of atherosclerosis in youth (PDAY) Study,” Circulation, vol. 117, no. 9, pp. 1216–1227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. McNeal, T. Dajani, D. Wilson, A. E. Cassidy-Bushrow, J. B. Dickerson, and M. Ory, “Hypercholesterolemia in youth: opportunities and obstacles to prevent premature atherosclerotic cardiovascular disease,” Current Atherosclerosis Reports, vol. 12, no. 1, pp. 20–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. B. Kannel and R. S. Vasan, “Triglycerides as vascular risk factors: new epidemiologic insights,” Current Opinion Cardiology, vol. 24, no. 4, pp. 345–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Danesh, R. Collins, and R. Peto, “Lipoprotein (a) and coronary heart disease: meta-analysis of prospective studies,” Circulation, vol. 102, no. 10, pp. 1082–1085, 2000. View at Publisher · View at Google Scholar
  9. B. Smolders, R. Lemmens, and V. Thijs, “Lipoprotein (a) and stroke: a meta-analysis of observational studies,” Stroke, vol. 38, no. 6, pp. 1959–1966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. J. Schreiner, J. D. Morrisett, A. R. Sharrett et al., “Lipoprotein[a] as a risk factor for preclinical atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 13, no. 6, pp. 826–833, 1993. View at Publisher · View at Google Scholar
  11. A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, “Hyperglycemic crises in adult patients with diabetes,” Diabetes Care, vol. 32, no. 7, pp. 1335–1343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. V. S. Malik, B. M. Popkin, G. A. Bray, J. P. Despres, and F. B. Hu, “Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk,” Circulation, vol. 121, no. 11, pp. 1356–1364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Wang, Y. Ouyang, J. Liu et al., “Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies,” BMJ, vol. 349, article g4490, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Li, “Effect of the vegetarian diet on non-communicable diseases,” Journal of the Science of Food and Agriculture, vol. 94, no. 2, pp. 169–173, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Huang, B. Yang, J. Zheng, G. Li, M. L. Wahlqvist, and D. Li, “Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review,” Annals of Nutrition & Metabolism, vol. 60, no. 4, pp. 233–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Walker and B. V. Reamy, “Diets for cardiovascular disease prevention: what is the evidence?” American Family Physician, vol. 79, no. 7, pp. 571–578, 2009. View at Google Scholar
  17. D. E. Threapleton, D. C. Greenwood, C. E. L. Evans et al., “Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis,” BMJ, vol. 347, article f6879, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Chen, T. K. Hyun, X. Han et al., “Coexpression within integrated mitochondrial pathways reveals different networks in normal and chemically treated transcriptomes,” International Journal of Genomics, vol. 2014, Article ID 452891, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Naylor, X. Lin, S. T. Weiss, B. A. Raby, and C. Lange, “Using canonical correlation analysis to discover genetic regulatory variants,” PLoS One, vol. 5, no. 5, article e10395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ye, J. Yuan, Z. Wang et al., “A canonical correlation analysis of AIDS restriction genes and metabolic pathways identifies purine metabolism as a key cooperator,” Computational and Mathematical Methods in Medicine, vol. 2016, Article ID 2460184, 10 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Pajukanta, M. Cargill, L. Viitanen et al., “Two loci on chromosomes 2 and X for premature coronary heart disease identified in early- and late-settlement populations of Finland,” American Journal of Human Genetics, vol. 67, no. 6, pp. 1481–1493, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Guo, F. Wang, L. Li et al., “Genome-wide linkage analysis of large multiple multigenerational families identifies novel genetic loci for coronary artery disease,” Scientific Reports, vol. 7, no. 1, p. 5472, 2017. View at Publisher · View at Google Scholar
  23. M. Farrall, F. R. Green, J. F. Peden et al., “Genome-wide mapping of susceptibility to coronary artery disease identifies a novel replicated locus on chromosome 17,” PLoS Genetics, vol. 2, no. 5, article e72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Francke, M. Manraj, C. Lacquemant et al., “A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27,” Human Molecular Genetics, vol. 10, no. 24, pp. 2751–2765, 2001. View at Publisher · View at Google Scholar
  25. J. Erdmann, C. Willenborg, J. Nahrstaedt et al., “Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11. 23,” European Heart Journal, vol. 32, no. 2, pp. 158–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Broeckel, C. Hengstenberg, B. Mayer et al., “A comprehensive linkage analysis for myocardial infarction and its related risk factors,” Nature Genetics, vol. 30, no. 2, pp. 210–214, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. E. Hong, I. Park, H. Cha et al., “Identification of mouse heart transcriptomic network sensitive to various heart diseases,” Biotechnology Journal, vol. 3, no. 5, pp. 648–658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Zhang, E. A. Hamad, M. Vausort et al., “Whole transcriptome microarrays identify long non-coding RNAs associated with cardiac hypertrophy,” Genomics Data, vol. 5, pp. 68–71, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Coleman, S. P. Sasi, J. Onufrak et al., “Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 309, no. 11, pp. H1947–H1963, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Herrer, E. Roselló-Lletí, A. Ortega et al., “Gene expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy,” BMC Medical Genomics, vol. 8, no. 1, pp. 1–14, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Sen, J. J. Barb, P. F. Cherukuri et al., “Identification of candidate genes involved in coronary artery calcification by transcriptome sequencing of cell lines,” BMC Genomics, vol. 15, no. 1, p. 198, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Chen, H. Y. Wang, and C. Y. Zeng, “Transcriptome network analysis of potential candidate genes for heart failure,” Genetics and Molecular Research, vol. 12, no. 4, pp. 4687–4697, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Zhao, Z. Sheng, and J. Huang, “A systematic analysis of heart transcriptome highlights divergent cardiovascular disease pathways between animal models and humans,” Molecular BioSystems, vol. 8, no. 2, pp. 504–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Czibik, V. Steeples, A. Yavari, and H. Ashrafian, “Citric acid cycle intermediates in cardioprotection,” Circulation Cardiovascular Genetics, vol. 7, no. 5, pp. 711–719, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Taegtmeyer, “Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles,” Circulation Research, vol. 43, no. 5, pp. 808–815, 1978. View at Publisher · View at Google Scholar
  36. H. Ashrafian, G. Czibik, M. Bellahcene et al., “Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway,” Cell Metabolism, vol. 15, no. 3, pp. 361–371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Balta, S. Demırkol, and T. Celik, “Coenzyme Q10 supplementation may improve diastolic heart functions especially coronary artery disease patients,” Hemodialysis International, vol. 17, no. 3, pp. 467-468, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. B. J. Lee, Y. C. Huang, S. J. Chen, and P. T. Lin, “Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease,” Nutrition, vol. 28, no. 3, pp. 250–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kumar, H. Kaur, P. Devi, and V. Mohan, “Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome,” Pharmacology & Therapeutics, vol. 124, no. 3, pp. 259–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. J. Lee, C. H. Yen, H. C. Hsu, J. Y. Lin, S. Hsia, and P. T. Lin, “A significant correlation between the plasma levels of coenzyme Q10 and vitamin B-6 and a reduced risk of coronary artery disease,” Nutrition Research, vol. 32, no. 10, pp. 751–756, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder,” Neuroendocrinology Letters, vol. 30, no. 4, pp. 470–476, 2008. View at Google Scholar
  42. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Lower plasma coenzyme Q 10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness,” Neuroendocrinology Letters, vol. 30, no. 4, pp. 462–469, 2009. View at Google Scholar
  43. R. B. Singh, M. A. Niaz, V. Rastogi, and S. S. Rastogi, “Coenzyme Q in cardiovascular disease,” The Journal of the Association of Physicians of India, vol. 46, no. 3, pp. 299–306, 1998. View at Google Scholar
  44. M. Bilinska, J. Wolszakiewicz, M. Duda, J. Janas, A. Beresewicz, and R. Piotrowicz, “Antioxidative activity of sulodexide, a glycosaminoglycan, in patients with stable coronary artery disease: a pilot study,” Medical Science Monitor, vol. 15, no. 12, pp. CR618–CR623, 2009. View at Google Scholar
  45. T. N. Wight and M. J. Merrilees, “Proteoglycans in atherosclerosis and restenosis,” Circulation Research, vol. 94, no. 9, pp. 1158–1167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ueda, A. E. Becker, and T. Fujimoto, “Pathological changes induced by repeated percutaneous transluminal coronary angioplasty,” Heart, vol. 58, no. 6, pp. 635–643, 1987. View at Publisher · View at Google Scholar
  47. G. Dawson, A. W. Kruski, and A. M. Scanu, “Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo-and hyperlipidemias,” Journal of Lipid Research, vol. 17, no. 2, pp. 125–131, 1976. View at Google Scholar
  48. S. Chatterjee and P. O. Kwiterovich, “Glycosphingolipids of human plasma lipoproteins,” Lipids, vol. 11, no. 6, pp. 462–466, 1976. View at Publisher · View at Google Scholar · View at Scopus
  49. E. N. Glaros, W. S. Kim, C. M. Quinn et al., “Glycosphingolipid accumulation inhibits cholesterol efflux via the ABCA1/apolipoprotein A-I pathway: 1-phenyl-2-decanoylamino-3-morpholino-1-propanol is a novel cholesterol efflux accelerator,” The Journal of Biological Chemistry, vol. 280, no. 26, pp. 24515–24523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Chatterjee, D. Bedja, S. Mishra et al., “Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet,” Circulation, vol. 129, no. 23, pp. 2403–2413, 2014. View at Publisher · View at Google Scholar · View at Scopus