Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2019, Article ID 1596895, 14 pages
Research Article

Transcriptome Sequencing Reveals Regulatory Mechanisms of Taxol Synthesis in Taxus wallichiana var. Mairei

1Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, Jiangsu 210014, China
2College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China

Correspondence should be addressed to Zhong Wang; moc.361@91gnohzgnaw

Received 18 December 2018; Revised 5 March 2019; Accepted 14 March 2019; Published 2 May 2019

Academic Editor: Giandomenico Corrado

Copyright © 2019 Tao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Taxol is one of the most potent and effective anticancer drugs and is originally isolated from Taxus species. To investigate the specific regulatory mechanisms of taxol synthesis in Taxus wallichiana var. mairei, RNA-seq was conducted to reveal the differences in transcriptional levels between wild type (WT) and “Jinxishan” (JXS), a cultivar selected from a population of Taxus mairei that shows about 3-fold higher taxol content in the needles than WT. Our results indicated that high expressions of the genes taxadienol acetyltransferase (TAT), taxadiene 5-alpha hydroxylase (T5H), 5-alpha-taxadienol-10-beta-hydroxylase (T10OH), and 2-debenzoyl-7,13-diacetylbaccatin III-2-O-benzoyl-transferase (DBBT), which catalyze a series of key acetylation and hydroxylation steps, are the main cause of high taxol content in JXS. Moreover, in the present study, the activation of jasmonic acid (JA) signal transduction and its crosstalk with gibberellin (GA), auxin, and ethylene (ET) explained the elevation of differentially expressed genes (DEGs) from the taxol biosynthesis pathway. This also indicates that taxol biosynthesis in T. mairei is associated with the balance of cell development and defense. TF-encoding (transcriptional factor) genes, represented by the ethylene-responsive transcription factor (ERF), basic/helix-loop-helix (bHLH), MYB, and WRKY families, were detected as differentially expressed between JXS and WT, further indicating that the regulation of hormone signaling on taxol biosynthesis genes was mediated by transcription factors (TFs). To our knowledge, this is the first study to illustrate the regulatory mechanisms of taxol synthesis in a new cultivar of T. mairei with a high taxol content in its needles. These transcriptome data provide reasonable explanations for the variation of taxol content between WT and JXS.