Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2011, Article ID 204976, 9 pages
http://dx.doi.org/10.1155/2011/204976
Research Article

Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

1Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (IMAA), 85050 Tito Scalo, Italy
2Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA), 80127 Naples, Italy
3Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, 80126 Naples, Italy

Received 15 February 2011; Revised 15 April 2011; Accepted 25 May 2011

Academic Editor: Nicola Masini

Copyright © 2011 Angelo Palombo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Kohl, M. Krause, C. Maierhofer, K. Mayer, J. Wöstmann, and H. Wiggenhauser, “3D-visualisation of NDT data using a data fusion technique,” Insight, vol. 45, no. 12, pp. 800–804, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Ch. Maierhofer, R. Arndt, M. Röllig et al., “Application of impulse-thermography for non-destructive assessment of concrete structures,” Cement and Concrete Composites, vol. 28, no. 4, pp. 393–401, 2006. View at Publisher · View at Google Scholar
  3. M. Proto, M. Bavusi, R. Bernini et al., “Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project,” Sensors, vol. 10, no. 12, pp. 10620–10639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Rödelsperger, G. Läufer, C. Gerstenecker, and M. Becker, “Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L,” Journal of Applied Geodesy, vol. 4, no. 1, pp. 41–54, 2010. View at Publisher · View at Google Scholar
  5. J. R. Brown and H. R. Hamilton, “Quantitative infrared thermography inspection for FRP applied to concrete using single pixel analysis,” Construction and Building Materials. In press. View at Publisher · View at Google Scholar
  6. S. Pascucci, C. Bassani, A. Palombo, M. Poscolieri, and R. Cavalli, “Road asphalt pavements analyzed by airborne thermal remote sensing: preliminary results of the venice highway,” Sensors, vol. 8, no. 2, pp. 1278–1296, 2008. View at Google Scholar · View at Scopus
  7. S. W. Doebling, C. R. Farrar, M. B. Prime, and D. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, Los Alamos National Laboratory, 1996.
  8. C. Gentile and G. Bernardini, “Output-only modal identification of a reinforced concrete bridge from radar-based measurements,” NDT and E International, vol. 41, no. 7, pp. 544–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. R. Farrar, T. W. Darling, A. Migliori, and W. E. Baker, “Microwave interferometers for non-contact vibration measurements on large structures,” Mechanical Systems and Signal Processing, vol. 13, no. 2, pp. 241–253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Pieraccini, F. Parrini, M. Fratini, C. Atzeni, P. Spinelli, and M. Micheloni, “Static and dynamic testing of bridges through microwave interferometry,” NDT and E International, vol. 40, no. 3, pp. 208–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pieraccini, M. Fratini, D. Dei, and C. Atzeni, “Structural testing of Historical Heritage Site Towers by microwave remote sensing,” Journal of Cultural Heritage, vol. 10, no. 2, pp. 174–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Atzeni, A. Bicci, D. Dei, M. Fratini, and M. Pieraccini, “Remote survey of the leaning tower of pisa by interferometric sensing,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 1, Article ID 5290014, pp. 185–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Gentile, “Application of microwave remote sensing to dynamic testing of stay-cables,” Remote Sensing, vol. 2, no. 1, pp. 36–51, 2010. View at Publisher · View at Google Scholar
  14. M. Pieraccini, F. Parrini, M. Fratini, C. Atzeni, and P. Spinelli, “In-service testing of wind turbine towers using a microwave sensor,” Renewable Energy, vol. 33, no. 1, pp. 13–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. D. Taylor, Ed., Ultra-Wideband Radar Technology, CRC Press, 2001.
  16. F. M. Henderson and A. J. Lewis, Eds., Manual of Remote Sensing. Principles and Applications of Imaging Radar, John Wiley & Sons, New York, NY, USA, 1998.
  17. C. Gentile and G. Bernardini, “An interferometric radar for non-contact measurement of deflections on civil engineering structures: laboratory and full-scale tests,” Structure and Infrastructure Engineering, vol. 6, no. 5, pp. 521–534, 2010. View at Publisher · View at Google Scholar
  18. G. Bernardini, G. De Pasquale, A. Bicci et al., “Microwave interferometer for ambient vibration measurement on civil engineering structures: 1. Principles of the radar technique and laboratory tests,” in Experimental Vibration Analysis for Civil Engineering Structures (EVACES '07), Porto, Portugal, October 2007.
  19. M. Pieraccini, M. Fratini, F. Parrini, G. Macaluso, and C. Atzeni, “High-speed CW step-frequency coherent radar for dynamic monitoring of civil engineering structures,” Electronics Letters, vol. 40, no. 14, pp. 907–908, 2004. View at Publisher · View at Google Scholar · View at Scopus