Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2011, Article ID 971302, 13 pages
http://dx.doi.org/10.1155/2011/971302
Review Article

Electrodynamical Coupling of Earth's Atmosphere and Ionosphere: An Overview

1Department of Physics, University of Lucknow, Lucknow 226007, India
2Indian Institute of Tropical Meteorology, Pune 411-008, India
3Physics Department, Banaras Hindu University, Varanasi 221005, India

Received 24 March 2011; Revised 31 July 2011; Accepted 9 September 2011

Academic Editor: Lucilla Alfonsi

Copyright © 2011 A. K. Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Singh, R. P. Singh, and A. K. Kamra, “The electrical environment of the earth's atmosphere: a review,” Space Science Reviews, vol. 113, no. 3-4, pp. 375–408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Neubert, “Atmospheric science: on sprites and their exotic kin,” Science, vol. 300, no. 5620, pp. 747–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. V. M. Sorokin and V. M. Chmyrev, “Atmosphere-Ionosphere Electrodynamic coupling,” in The Atmosphere and Ionosphere, Physics of Earth and Space Environment, pp. 97–104, Springer, New York, NY, USA, 2010. View at Google Scholar
  4. E. S. Kazimirovsky, “Coupling from below as a source of ionospheric variability: a review,” Annals of Geophysics, vol. 45, no. 1, pp. 1–30, 2002. View at Google Scholar · View at Scopus
  5. T. B. Jones, K. Davies, and B. Wieder, “Observations of D-Region modifications at low and very low frequencies,” Nature, vol. 238, no. 5358, pp. 33–34, 1972. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. Gamble, C. J. Rodger, M. A. Clilverd et al., “Radiation belt electron precipitation by man-made VLF transmissions,” Journal of Geophysical Research A, vol. 113, no. 10, Article ID A10211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. V. O. Rapoport, V. L. Frolov, G. P. Komrakov et al., “Some results of measuring the characteristics of electromagnetic and plasma disturbances stimulated in the outer ionosphere by high-power high-frequency radio emission from the "Sura" facility,” Radiophysics and Quantum Electronics, vol. 50, no. 8, pp. 645–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. V. M. Sorokin, V. M. Chmyrev, and A. K. Yaschenko, “Electrodynamic model of the lower atmosphere and the ionosphere coupling,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 63, pp. 1681–1691, 2001. View at Google Scholar
  9. H. C. Chang and U. S. Inan, “Lightning-induce energetic electron precipitation from the magnetosphere,” Journal of Geophysical Research, vol. 90, pp. 4531–4539, 1985. View at Google Scholar
  10. U. S. Inan, D. C. Shafer, W. Y. Yip, and R. E. Orville, “Subionospheric VLF signatures of nighttime D-region perturbations in the vicinity of lightning discharges,” Journal of Geophysical Research, vol. 93, pp. 11455–11467, 1988. View at Google Scholar
  11. R. C. Moore, U. S. Inan, T. F. Bell, and E. J. Kennedy, “ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of 4400 km,” Journal of Geophysical Research A, vol. 112, no. 5, Article ID A05309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. V. L. Frolov, V. O. Rapoport, G. P. Komrakov et al., “Density ducts formed by heating the Earth's ionosphere with high-power HF radio waves,” JETP Letters, vol. 88, no. 12, pp. 790–794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. M. Milikh, K. Papadopoulos, H. Shroff et al., “Formation of artificial ionospheric ducts,” Geophysical Research Letters, vol. 35, no. 17, Article ID L17104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. V. Dzhordzhio, M. M. Mogilevskii, V. M. Chmyrev et al., “Acceleration of ions in the plasma environment of the Earth by the radiation from a low-frequency transmitter on the ground,” JETP Letters, vol. 46, pp. 405–409, 1987. View at Google Scholar
  15. H. L. Rowland, R. F. Ferseler, and P. F. Bernhardt, “Breakdown of the neutral atmosphere in the D region due to lightning driven electromagnetic pulses,” Journal of Geophysical Research, vol. 101, pp. 7935–7945, 1996. View at Google Scholar
  16. V. P. Pasko, U. S. Inan, T. F. Bell, and Y. N. Taranenko, “Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere,” Journal of Geophysical Research A, vol. 102, no. 3, Article ID 96JA03528, pp. 4529–4561, 1997. View at Google Scholar · View at Scopus
  17. S. Fadnavis, D. Siingh, and R. P. Singh, “Mesospheric inversion layer and sprites,” Journal of Geophysical Research D, vol. 114, no. 23, Article ID D23307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. D. Sentman, E. M. Wescott, R. H. Picard et al., “Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 5, pp. 537–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Heavner, Optical spectroscopic observations of sprites, blue jets, and elves: Inferred microphysical processes and their macrophysical implications, Ph.D. dissertation, University of Alaska Fairbanks, 2000.
  20. V. M. Sorokin, V. M. Chmyrev, and N. V. Isaev, “A generation model of small-scale geomagnetic field-aligned plasma inhomogeneities in the ionosphere,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 60, no. 13, pp. 1331–1342, 1998. View at Google Scholar · View at Scopus
  21. V. M. Chmyrev, V. M. Sorokin, and O. A. Pokhotelov, “Theory of small scale plasma density inhomogeneities and ULF/ELF magnetic field oscillations excited in the ionosphere prior to earthquakes,” in Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, M. Hayakawa, Ed., pp. 759–776, Terrapublication, Tokyo, Japan, 1999. View at Google Scholar
  22. M. Stolzenburg and T. C. Marshall, “Charge structure and dynamics in thunderstorms,” Space Science Reviews, vol. 137, no. 1-4, pp. 355–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Yair, “Charge generation and separation processes,” Space Science Reviews, vol. 137, no. 1-4, pp. 119–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Saunders, “Charge separation mechanisms in clouds,” Space Science Reviews, vol. 137, no. 1-4, pp. 335–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Williams, M. Valente, E. Gerken, and R. Golka, “Calibrated radiance measurements with an air-field glow discharge tube: application to sprites in the mesosphere,” in Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al., Ed., vol. 225 of NATO Science Series, pp. 237–251, Springer, New York, NY, USA, 2006. View at Google Scholar
  26. M. J. Rycroft and M. Füllekrug, “The initiation and evolution of SPECIAL,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 13-14, pp. 1103–1113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. K. L. Aplin, R. G. Harrison, and M. J. Rycroft, “Investigating earth's atmospheric electricity: a role model for planetary studies,” Space Science Reviews, vol. 137, no. 1-4, pp. 11–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Rycroft, “Electrical processes coupling the atmosphere and ionosphere: an overview,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 3-5, pp. 445–456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. T. C. Marshall, M. Stolzenburg, C. R. Maggio et al., “Observed electric fields associated with lightning initiation,” Geophysical Research Letters, vol. 32, no. 3, pp. 1–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Stolzenburg, T. C. Marshall, W. D. Rust, E. Bruning, D. R. MacGorman, and T. Hamlin, “Electric field values observed near lightning flash initiations,” Geophysical Research Letters, vol. 34, no. 4, Article ID L04804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. V. Gurevich and K. P. Zybin, “Runaway breakdown and electric discharges in thunderstorms,” Physics-Uspekhi, vol. 44, no. 11, pp. 1119–1140, 2001. View at Google Scholar · View at Scopus
  32. A. V. Gurevich and K. P. Zybin, “Runaway breakdown and the mysteries of lightning,” Physics Today, vol. 58, no. 5, pp. 37–43, 2005. View at Google Scholar · View at Scopus
  33. A. V. Gurevich, G. G. Mitko, V. P. Antonova et al., “An intracloud discharge caused by extensive atmospheric shower,” Physics Letters Section A, vol. 373, no. 39, pp. 3550–3553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Uman, The Lightning Discharge, Academic, Orlando, Fla, USA, 1987.
  35. D. D. Sentman and E. M. Wescott, “Observations of upper atmospheric optical flashes recorded from an aircraft,” Geophysical Research Letters, vol. 20, no. 24, pp. 2857–2860, 1993. View at Google Scholar · View at Scopus
  36. C. Haldoupis, R. J. Steiner, A. Mika et al., ““Early/slow” events: a new category of VLF perturbations observed in relation with sprites,” Journal of Geophysical Research A, vol. 111, no. 11, Article ID A11321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Liszka, “On the possible infrasound generation by sprites,” Journal of Low Frequency Noise Vibration and Active Control, vol. 23, no. 2, pp. 85–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Liszka and Y. Hobara, “Sprite-attributed infrasonic chirps-their detection, occurrence and properties between 1994 and 2004,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 11, pp. 1179–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Farges, E. Blanc, A. Le Pichon, T. Neubert, and T. H. Allin, “Identification of infrasound produced by sprites during the Sprite2003 campaign,” Geophysical Research Letters, vol. 32, no. 1, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Neubert, M. Rycroft, T. Farges et al., “Recent results from studies of electric discharges in the mesosphere,” Surveys in Geophysics, vol. 29, no. 2, pp. 71–137, 2008. View at Publisher · View at Google Scholar
  41. S. B. Mende, H. U. Frey, R. R. Hsu et al., “D region ionization by lightning-induced electromagnetic pulses,” Journal of Geophysical Research A, vol. 110, no. 11, Article ID A11312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Cheng, S. A. Cummer, H. T. Su, and R. R. Hsu, “Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses,” Journal of Geophysical Research A, vol. 112, no. 6, Article ID A06318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Haldoupis, N. Amvrosiadi, B. R. T. Cotts, O. A. van der Velde, O. Chanrion, and T. Neubert, “More evidence for a one-to-one correlation between Sprites and Early VLF perturbations,” Journal of Geophysical Research, vol. 115, p. A07304, 2010. View at Google Scholar
  44. C. Haldoupis, A. Mika, and S. Shalimov, “Modeling the relaxation of early VLF perturbations associated with transient luminous events,” Journal of Geophysical Research A, vol. 114, no. 10, Article ID A00E04, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Mika, Very low frequency EM wave studies of transient luminous events in the lower ionosphere, Ph.D. thesis, University of Crete, 2007.
  46. Y. N. Taranenko, U. S. Inan, and T. F. Bell, “Interaction with the lower ionosphere of electromagnetic pulses from lightning: heating, attachment, and ionization,” Geophysical Research Letter, vol. 20, pp. 1539–1542, 1993. View at Google Scholar
  47. H. L. Rowland, “Theories and simulations of elves, sprites and blue jets,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 60, no. 7–9, pp. 831–844, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Hiraki, T. Lizhu, H. Fukunishi, K. Nambu, and H. Fujiwa, “Development of a new numerical model for investigation the energetic of sprites,” Eos Transactions of American Geophysical Union, vol. 83, no. 47, 2002. View at Google Scholar
  49. J. M. Galloway, F. J. Dentener, D. G. Capone et al., “Nitrogen cycles: past, present and future,” Biogeochemistry, vol. 70, pp. 153–226, 2004. View at Google Scholar
  50. D. Siingh, R. P. Singh, A. K. Kamra et al., “Review of electromagnetic coupling between the Earth's atmosphere and the space environment,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 67, no. 6, pp. 637–658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Schumann and H. Huntrieser, “The global lightning-induced nitrogen oxides source,” Atmospheric Chemistry and Physics, vol. 7, no. 14, pp. 3823–3907, 2007. View at Google Scholar · View at Scopus
  52. P. J. Crutzen, “Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air,” Tellus, vol. 26, pp. 47–57, 1974. View at Google Scholar
  53. W. C. Burgess and U. S. Inan, “The role of ducted whistlers in the precipitation loss and equilibrium flux of radiation belt electrons,” Journal of Geophysical Research, vol. 98, pp. 15643–15650, 1993. View at Google Scholar
  54. T. J. Rosenberg, R. A. Helliwell, and J. P. Katsufrakis, “Electron precipitation associated with discrete very low frequency emissions,” Journal of Geophysical Research, vol. 76, p. 8445, 1971. View at Google Scholar
  55. M. J. Rycroft, “Enhanced energetic electron intensities at 100 km altitude and a whistler propagating through the plasmasphere,” Planetary and Space Science, vol. 21, no. 2, pp. 239–251, 1973. View at Google Scholar · View at Scopus
  56. R. J. Goldberg, S. A. Curtis, and J. R. Barcus, “Detailed spectral structure of magnetospheric electron bursts precipitated by lightning,” Journal of Geophysical Research, vol. 92, pp. 2505–2512, 1987. View at Google Scholar
  57. H. D. Voss, W. L. Imhof, M. Walt et al., “Lightning-induced electron precipitation,” Nature, vol. 312, no. 5996, pp. 740–742, 1984. View at Publisher · View at Google Scholar · View at Scopus
  58. H. D. Voss, “Satellite observations of lightning-induced electron precipitation,” Journal of Geophysical Research A, vol. 103, no. 6, Article ID 97JA02878, pp. 11725–11744, 1998. View at Google Scholar · View at Scopus
  59. M. J. Rycroft, S. Israelsson, and C. Price, “The global atmospheric electric circuit, solar activity and climate change,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 62, no. 17-18, pp. 1563–1576, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. E. R. Williams and S. J. Heckman, “The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the Earth,” Journal of Geophysical Research, vol. 98, no. 3, pp. 5221–5234, 1993. View at Google Scholar · View at Scopus
  61. M. J. Rycroft, A. Odzimek, N. F. Arnold, M. Füllekrug, A. Kułak, and T. Neubert, “New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 69, no. 17-18, pp. 2485–2509, 2007. View at Publisher · View at Google Scholar
  62. C. L. Ziegler and D. R. Macgorman, “Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm,” Journal of the Atmospheric Sciences, vol. 51, no. 6, pp. 833–851, 1994. View at Google Scholar · View at Scopus
  63. V. P. Pasko, “Electric jets,” Nature, vol. 423, no. 6943, pp. 927–929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. H. T. Su, R. R. Hsu, A. B. Chen et al., “Gigantic jets between a thundercloud and the ionosphere,” Nature, vol. 423, no. 6943, pp. 974–976, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. P. Raizer, G. M. Milikh, and M. N. Shneider, “On the mechanism of blue jet formation and propagation,” Geophysical Research Letters, vol. 33, no. 23, Article ID L23801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. P. Raizer, G. M. Milikh, and M. N. Shneider, “Leader-streamers nature of blue jets,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 69, no. 8, pp. 925–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Johnston, “Electromagnetic fields generated by earthquakes,” in International Handbook of Earthquake and Engineering Seismology, W. Lee, H. Kanamori, P. Jennings, and C. Kisslinger, Eds., part A, pp. 621–634, Academic Press, 2002. View at Google Scholar
  68. M. Parrot, “Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events,” Journal of Geophysical Research, vol. 99, pp. 23339–23347, 1994. View at Google Scholar
  69. V. A. Liperovsky, O. A. Pokhotelov, C. V. Meister, and E. V. Liperovskaya, “Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes,” Geomagnetism and Aeronomy, vol. 48, no. 6, pp. 795–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. N. F. Arnold and T. R. Robinson, “Solar cycle changes to planetary wave propagation and their influence on the middle atmosphere circulation,” Annales Geophysicae, vol. 16, no. 1, pp. 69–76, 1998. View at Google Scholar · View at Scopus
  71. S. A. Bowhill, “Interaction between the stratosphere and ionosphere,” Annals of the International Year of the Quiet Sun, vol. 5, pp. 83–95, 1969. View at Google Scholar
  72. P. R. Krehbiel, J. A. Riousset, V. P. Pasko et al., “Upward electrical discharges from thunderstorms,” Nature Geoscience, vol. 1, no. 4, pp. 233–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. T. C. Marshall, M. Stolzenburg, P. R. Krehbiel, N. R. Lund, and C. R. Maggio, “Electrical evolution during the decay stage of New Mexico thunderstorms,” Journal of Geophysical Research D, vol. 114, no. 2, Article ID D02209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects, Cambridge University Press, Cambridge, UK, 2003.
  75. M. Stolzenburg, “Observations of high ground flash densities of positive lightning in summertime thunderstorms,” Monthly Weather Review, vol. 122, no. 8, pp. 1740–1750, 1994. View at Google Scholar · View at Scopus
  76. M. Stolzenburg, W. D. Rust, B. F. Smull, and T. C. Marshall, “Electrical structure in thunderstorm convective regions 1. Mesoscale convective systems,” Journal of Geophysical Research D, vol. 103, no. 12, pp. 14059–14078, 1998. View at Google Scholar · View at Scopus
  77. W. D. Rust, D. R. MacGorman, E. C. Bruning et al., “Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS),” Atmospheric Research, vol. 76, no. 1-4, pp. 247–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Siingh, V. Gopalakrishnan, R. P. Singh et al., “The atmospheric global electric circuit: an overview,” Atmospheric Research, vol. 84, no. 2, pp. 91–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. R. G. Roble and L. Tzur, “The global atmospheric-electrical circuit,” in The Earth’s Electrical Environment, pp. 206–231, National Academy Press, Washington, DC, USA, 1986. View at Google Scholar
  80. S. S. Davydenko, E. A. Mareev, T. C. Marshall, and M. Stolzenburg, “On the calculation of electric fields and currents of mesoscale convective systems,” Journal of Geophysical Research D, vol. 109, no. 11, pp. D11103–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. R. G. Harrison and K. S. Carslaw, “Ion-aerosol-cloud processes in the lower atmosphere,” Reviews of Geophysics, vol. 41, no. 3, pp. 2–1, 2003. View at Google Scholar · View at Scopus
  82. W. O. Schumann, “U‘ ber die strahlunglosen eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenh ulle umgeben ist,” Zeitschrift Naturforschung, vol. 7, pp. 6627–6628, 1952. View at Google Scholar
  83. E. Huang, E. Williams, R. Boldi et al., “Criteria for sprites and elves based on Schumann resonance observations,” Journal of Geophysical Research D, vol. 104, no. 14, pp. 16943–16964, 1999. View at Google Scholar · View at Scopus
  84. E. Greenberg, C. Price, Y. Yair, M. Ganot, J. Bór, and G. Sátori, “ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 69, no. 13, pp. 1569–1586, 2007. View at Publisher · View at Google Scholar
  85. E. Greenberg, C. Price, Y. Yair, C. Haldoupis, O. Chanrion, and T. Neubert, “ELF/VLF signatures of sprite-producing lightning discharges observed during the 2005 EuroSprite campaign,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 71, no. 12, pp. 1254–1266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. A. Helliwell, “40 years of whistlers,” in Modern Radio Science, pp. 189–212, Oxford University Press, New York, NY, USA, 1993. View at Google Scholar
  87. C. J. Rodger, “Subionospheric VLF perturbations associated with lightning discharges,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 5, pp. 591–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. U. S. Inan, S. A. Cummer, and R. A. Marshall, “A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges,” Journal of Geophysical Research A, vol. 115, no. 6, Article ID A00E36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Hayakawa, “Association of whistlers with lightning discharges on the Earth and on Jupiter,” Journal of Atmospheric and Terrestrial Physics, vol. 57, no. 5, pp. 525–535, 1995. View at Google Scholar · View at Scopus
  90. M. J. Rycroft, “Interactions between whistler-mode waves and energetic electrons in the coupled system formed by the magnetosphere, ionosphere and atmosphere,” Journal of Atmospheric and Terrestrial Physics, vol. 53, no. 9, pp. 849–858, 1991. View at Google Scholar · View at Scopus
  91. A. Mika, C. Haldoupis, R. A. Marshall, T. Neubert, and U. S. Inan, “Subionospheric VLF signatures and their association with sprites observed during EuroSprite-2003,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 67, no. 16, pp. 1580–1597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. A. K. Singh, “Ultra low frequency waves,” in Solar Terrestrial Environment: Space Weather, R. P. Singh, R. Singh, and A. K. Singh, Eds., pp. 429–440, Allied, New Delhi, India, 2003. View at Google Scholar
  93. P. P. Belyaev, S. V. Polyakov, V. O. Rapoport, and V. Y. Trakhtengerts, “The ionospheric Alfven resonator,” Journal of Atmospheric and Terrestrial Physics, vol. 52, no. 9, pp. 781–788, 1990. View at Google Scholar · View at Scopus
  94. A. I. Sukhorukov and P. Stubbe, “Problems of blue jet theories,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 60, no. 7–9, pp. 725–732, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. P. P. Belyaev, S. V. Polyakov, E. N. Ermakova, and S. V. Isaev, “Solar cycle variations in the ionospheric Alfven resonator 1985-1995,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 62, no. 4, pp. 239–248, 2000. View at Google Scholar · View at Scopus
  96. G. A. Mikhailova, Y. M. Mikhailov, and O. V. Kapustina, “ULF-VLF electric fields in the external ionosphere over powerful typhoons in Pacific Ocean,” International Journal of Geomagnetism and Aeronomy, vol. 2, no. 2, 2000. View at Google Scholar
  97. V. P. Pasko, U. S. Inan, Y. N. Taranenko, and T. F. Bell, “Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thunderstorm fields,” Geophysical Research Letter, vol. 22, pp. 365–370, 1995. View at Google Scholar
  98. C. J. Rodger, M. Cho, M. A. Clilverd, and M. J. Rycroft, “Lower ionospheric modification by lightning-EMP: simulation of the night ionosphere over the United States,” Geophysical Research Letters, vol. 28, no. 2, pp. 199–202, 2001. View at Google Scholar · View at Scopus
  99. U. S. Inan, “VLF heating of the lower ionosphere,” Geophysical Research Letters, vol. 17, pp. 729–732, 1990. View at Google Scholar
  100. P. Stubbe, “Review of ionospheric modification experiments at Tromsø,” Journal of Atmospheric and Terrestrial Physics, vol. 58, no. 1-4, pp. 349–368, 1996. View at Google Scholar · View at Scopus
  101. V. P. Pasko, U. S. Inan, and T. F. Bell, “Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields,” Geophysical Research Letters, vol. 23, no. 6, pp. 649–652, 1996. View at Google Scholar · View at Scopus
  102. M. Cho and M. J. Rycroft, “Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 60, no. 7–9, pp. 871–888, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. L. P. Babich, A. Y. Kudryavtsev, M. L. Kudryavtseva, and I. M. Kutsyk, “Atmospheric gamma-ray and neutron flashes,” Journal of Experimental and Theoretical Physics, vol. 106, no. 1, pp. 65–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Füllekrug, R. Roussel-Dupré, E. M. D. Symbalisty et al., “Relativistic runaway breakdown in low-frequency radio,” Journal of Geophysical Research A, vol. 115, no. 1, Article ID A00E09, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. O. Chanrion and T. Neubert, “Production of runaway electrons by negative streamer discharges,” Journal of Geophysical Research A, vol. 115, no. 6, Article ID A00E32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Gerken and U. Inan, “Streamers and diffuse glow observed in upper atmospheric electrical discharges,” IEEE Transactions on Plasma Science, vol. 33, no. 2 I, pp. 282–283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Adachi, H. Fukunishi, Y. Takahashi, and M. Sato, “Roles of the EMP and QE field in the generation of columniform sprites,” Geophysical Research Letters, vol. 31, no. 4, pp. L04107–4, 2004. View at Google Scholar · View at Scopus
  108. O. A. van der Velde, A. Mika, S. Soula, C. Haldoupis, T. Neubert, and U. S. Inan, “Observations of the relationship between sprite morphology and in-cloud lightning processes,” Journal of Geophysical Research D, vol. 111, no. 15, Article ID D15203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Liu and V. P. Pasko, “Effects of photoionization on propagation and branching of positive and negative streamers in sprites,” Journal of Geophysical Research A, vol. 109, Article ID A04301, 2004. View at Publisher · View at Google Scholar
  110. J. Qin, S. Celestin, and V. P. Pasko, “On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity,” Journal of Geophysical Research A, vol. 116, Article ID A06305, 2011. View at Google Scholar
  111. V. P. Pasko and J. J. George, “Three-dimensional modeling of blue jets and blue starters,” Journal of Geophysical Research A, vol. 107, Article ID 1458, 2002. View at Google Scholar
  112. V. P. Pasko, M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood, “Electrical discharge from a thundercloud top to the lower ionosphere,” Nature, vol. 416, no. 6877, pp. 152–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. C. L. Kuo, A. B. Chen, Y. J. Lee et al., “Modeling elves observed by FORMOSAT-2 satellite,” Journal of Geophysical Research A, vol. 112, no. 11, Article ID A11312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. C. L. Kuo, J. K. Chou, L. Y. Tsai et al., “Discharge processes, electric field, and electron energy in ISUAL recorded gigantic jets,” Journal of Geophysical Research A, vol. 114, no. 4, Article ID A04314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. S. A. Cummer, J. Li, F. Han et al., “Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet,” Nature Geoscience, vol. 2, no. 9, pp. 617–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. V. I. Ermakov and Y. I. Stozhkov, Thunderstorm Cloud Physics, Lebedev Physical Institute, Russian Academy of Sciences, 2004.
  117. M. P. McCarthy and G. K. Parks, “On the modulation of X ray fluxes in thunderstorms,” Journal of Geophysical Research, vol. 97, no. 5, pp. 5857–5864, 1992. View at Google Scholar · View at Scopus
  118. G. J. Fishman, P. N. Bhat, R. Mallozzi et al., “Discovery of intense gamma-ray flashes of atmospheric origin,” Science, vol. 264, no. 5163, pp. 1313–1316, 1994. View at Google Scholar · View at Scopus
  119. A. C. Aikin and N. C. Maynard, “A Van de Graaf source mechanism for middle atmospheric vertical electric fields,” Journal of Atmospheric and Terrestrial Physics, vol. 52, no. 9, pp. 695–705, 1990. View at Google Scholar · View at Scopus
  120. S. V. Polyakov, V. O. Rapoport, and V. Y. Trakhtengerts, “the generation of electric fields in the upper atmosphere,” Geomagnetism Aeronomy, vol. 30, p. 869, 1990. View at Google Scholar
  121. R. A. Goldberg, “Middle atmospheric electrodynamics during map,” Advances in Space Research, vol. 10, no. 10, pp. 209–217, 1990. View at Google Scholar · View at Scopus
  122. M. C. Kelley, C. L. Siefring, and R. F. Pfaff Jr., “Large middle atmospheric electric fields, fact or fiction?” Geophysical Research Letter, vol. 10, p. 733, 1983. View at Google Scholar
  123. A. M. Zadorozhny and A. A. Tyutin, “Effects of geomagnetic activity on the mesospheric electric fields,” Annales Geophysicae, vol. 16, no. 12, pp. 1544–1551, 1998. View at Google Scholar · View at Scopus
  124. A. M. Gokov and S. I. Martynenko, “Changes in the electron collision frequency and electric field in the lower ionosphere,” Geomagnetism Aeronomy, vol. 37, p. 76, 1997. View at Google Scholar
  125. S. I. Martynenko, V. T. Rozumenko, A. M. Tsymbal, O. F. Tyrnov, and A. M. Gokov, “Mesospheric electric field measurements with a partial reflection radar,” Journal Atmospheric Electricity, vol. 19, p. 81, 1999. View at Google Scholar
  126. S. I. Martynenko, V. T. Rozumenko, and O. F. Tyrnov, “New possibilities for mesospheric electricity diagnostics,” Advances in Space Research, vol. 27, no. 6-7, pp. 1127–1132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. C. E. Meek, A. H. Manson, S. I. Martynenko, V. T. Rozumenko, and O. F. Tyrnov, “Remote sensing of mesospheric electric fields using MF radars,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 10, pp. 881–890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. I. M. Fuks, R. S. Shubova, and S. I. Martynenko, “Lower ionosphere response to conductivity variations of the near-earth atmosphere,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 59, no. 9, pp. 961–965, 1997. View at Google Scholar · View at Scopus
  129. S. I. Martynenko and S. F. Clifford, “On the electrical coupling between the troposphere and the mesosphere,” International Journal of Geomagnetism and Aeronomy, vol. 6, Article ID GI2007, 2006. View at Google Scholar
  130. D. Siingh, R. P. Singh, A. K. Singh, M. N. Kulkarni, A. S. Gautam, and A. K. Singh, “Solar activity, lightning and climate,” Surveys in Geophysics, vol. 32, no. 6, pp. 659–703, 2011. View at Publisher · View at Google Scholar
  131. T. Ogawa, Y. Tanaka, A. Huzita, and M. Yasuhara, “Horizontal electric fields in the middle latitude,” Planetary and Space Science, vol. 23, no. 5, pp. 825–830, 1975. View at Google Scholar · View at Scopus