About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2012 (2012), Article ID 131842, 14 pages
http://dx.doi.org/10.1155/2012/131842
Research Article

Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process

Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia

Received 6 December 2011; Revised 9 March 2012; Accepted 18 March 2012

Academic Editor: Yuichi Otsuka

Copyright © 2012 Sergey Pulinets. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Pulinets and K. A. Boyarchuk, Ionospheric Precursors of Earthquakes, Springer, New York, NY, USA, 2004.
  2. V. A. Liperovsky, O. A. Pokhotelov, and S. A. Shalimov, Ionospheric Precursors of the Earthquakes, Nauka, Moscow, Russia, 1992.
  3. S. A. Pulinets, “Seismic activity as a source of the ionospheric variability,” Advances in Space Research, vol. 22, no. 6, pp. 903–906, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Kouris, P. Spalla, and B. Zolesi, “Could ionospheric variations be precursors of a seismic event? A short discussion,” Annali di Geofisica, vol. 44, no. 2, pp. 395–402, 2001. View at Google Scholar · View at Scopus
  5. H. Rishbeth, “Do earthquake precursors really exist?” Eos, vol. 88, no. 29, p. 296, 2007. View at Google Scholar · View at Scopus
  6. S. A. Pulinets, A. D. Legen'ka, T. V. Gaivoronskaya, and V. K. Depuev, “Main phenomenological features of ionospheric precursors of strong earthquakes,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 16–18, pp. 1337–1347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Y. Liu, Y. J. Chuo, S. J. Shan et al., “Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements,” Annales Geophysicae, vol. 22, no. 5, pp. 1585–1593, 2004. View at Google Scholar · View at Scopus
  8. J. Y. Liu, Y. I. Chen, Y. J. Chuo, and C. S. Chen, “A statistical investigation of preearthquake ionospheric anomaly,” Journal of Geophysical Research A, vol. 111, no. 5, Article ID A05304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Liu, C. H. Chen, Y. I. Chen, W. H. Yang, K. I. Oyama, and K. W. Kuo, “A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007,” Journal of Asian Earth Sciences, vol. 39, no. 1-2, pp. 76–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Parrot, “Statistical analysis of Ionospheric Perturbations Observed by DEMETER in Relation with the Seismic Activity,” Earthquake Science, vol. 24, no. 6, pp. 513–521, 2011. View at Publisher · View at Google Scholar
  11. V. A. Liperovsky, O. A. Pokhotelov, C. V. Meister, and E. V. Liperovskaya, “Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes,” Geomagnetism and Aeronomy, vol. 48, no. 6, pp. 795–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Pulinets, A. D. Legen'ka, and V. Kh. Depuev, “Pre-seismic effects on the equatorial anomaly,” in 10th International symposium on Equatorial Aeronomy (ISEA '00), Antalya, Turkey, May 2000.
  13. S. A. Pulinets and A. D. Legen'ka, “Dynamics of the near-equatorial ionosphere prior to strong earthquakes,” Geomagnetism and Aeronomy, vol. 42, no. 2, pp. 227–232, 2002. View at Google Scholar · View at Scopus
  14. S. A. Pulinets, K. A. Boyarchuk, V. V. Hegai, V. P. Kim, and A. M. Lomonosov, “Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling,” Advances in Space Research, vol. 26, no. 8, pp. 1209–1218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pulinets and D. Ouzounov, “Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—an unified concept for earthquake precursors validation,” Journal of Asian Earth Sciences, vol. 41, no. 4-5, pp. 371–382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Pulinets, “Physical mechanism of the vertical electric field generation over active tectonic faults,” Advances in Space Research, vol. 44, no. 6, pp. 767–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, S. A. Pulinets, B. Zhao, and M. N. Tsidilina, “Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008,” Advances in Space Research, vol. 48, no. 3, pp. 488–499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, and S. A. Pulinets, “Variations of equatorial electrojet as possible seismo-ionospheric precursor at the occurrence of TEC anomalies before strong earthquake,” Advances in Space Research, vol. 49, pp. 509–517, 2012. View at Google Scholar
  19. F. Freund, “Toward a unified solid state theory for pre-earthquake signals,” Acta Geophysica, vol. 58, no. 5, pp. 719–766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Sekimoto and M. Takayama, “Fundamental processes of corona discharge, surface analysis of traces stained with discharge on brass plate in negative corona,” Journal of the Institute of Electrostatics Japan, vol. 33, no. 1, pp. 38–42, 2009. View at Google Scholar
  21. S. A. Pulinets and R. F. Benson, Radio-Frequency Sounders in Space, Review of Radio Science, W. Ross Stone, Ed., Oxford University Press, 1999.
  22. S. A. Pulinets, A. D. Legen'ka, A. T. Karpachev et al., “The earthquakes prediction possibility on the base of topside sounding data,” IZMIRAN preprint N 34a(981), 25 p., 1991.
  23. N. P. Benkova, M. G. Deminov, A. T. Karpachev et al., “Longitude features shown by topside sounder data and their importance in ionospheric mapping,” Advances in Space Research, vol. 10, no. 8, pp. 57–66, 1990. View at Google Scholar · View at Scopus
  24. G. F. Deminova, “Wavelike structure of longitudinal variations of the nighttime equatorial anomaly,” Geomagnetism and Aeronomy, vol. 35, no. 4, pp. 576–579, 1996. View at Google Scholar · View at Scopus
  25. S. A. Pulinets and V. H. Depuev, “Ionospheric variability around the time of Mammoth Lakes seismic swarm of May 1980 in California,” Proceedings of the IRI Task Force Activity 2003, ICTP Publishing, IC/IR/2004/1, pp. 85–96, 2004. View at Google Scholar
  26. S. Kon, M. Nishihashi, and K. Hattori, “Ionospheric anomalies possibly associated with M≥6.0 earthquakes in the Japan area during 1998–2010: case studies and statistical study,” Journal of Asian Earth Sciences, vol. 41, no. 4-5, pp. 410–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Ouzounov, S. Pulinets, A. Romanov et al., “Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations: Preliminary Results,” Earthquake Science, vol. 24, pp. 557–564, 2011. View at Google Scholar
  28. S. A. Pulinets and A. D. Legen'ka, “First simultaneous observations of the topside density variations and VLF emissions before the Irpinia earthquake, November, 23, 1980 in magnetically conjugated regions,” in Proceedings of the International Workshop on Seismo Electromagnetics, pp. 56–59, Chofu, Japan, 1997.
  29. S. A. Pulinets, P. Biagi, V. Tramutoli, A. D. Legen'ka, and V. K. Depuev, “Irpinia earthquake 23 November 1980—lesson from nature reviled by joint data analysis,” Annals of Geophysics, vol. 50, no. 1, pp. 61–78, 2007. View at Google Scholar · View at Scopus
  30. S. Pulinets, D. Ouzounov, and M. Parrot, “Conjugated near-equatorial effects registered by DEMETER satellite before Sumatra earthquake M8.7 of March 28, 2005,” in DEMETER Workshop, Toulouse, France, June 2006.
  31. V. M. Sorokin, “Plasma and electromagnetic effects in the ionosphere related to the dynamics of charged aerosols in the lower atmosphere,” Russian Journal of Physical Chemistry B, vol. 1, no. 2, pp. 138–170, 2007. View at Google Scholar
  32. F. T. Freund, I. G. Kulahci, G. Cyr et al., “Air ionization at rock surfaces and pre-earthquake signals,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 71, no. 17-18, pp. 1824–1834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Namgaladze, M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, “Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content,” Geomagnetism and Aeronomy, vol. 49, no. 2, pp. 252–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. L. Kuo, J. D. Huba, G. Joyce, and L. C. Lee, “Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges,” Journal of Geophysical Research, vol. 116, Article ID A10317, 2011. View at Publisher · View at Google Scholar
  35. M. J. Rycroft and R. G. Harrison, “Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit,” Space Science Reviews. In press. View at Publisher · View at Google Scholar
  36. C. L. Kuo, J. D. Huba, G. Joyce, and L. C. Lee, “Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges,” Journal of Geophysical Research A, vol. 116, no. 10, Article ID A10317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. W. A. Hoppel, “Theory of the electrode effect,” Journal of Atmospheric and Terrestrial Physics, vol. 29, no. 6, pp. 709–721, 1967. View at Google Scholar · View at Scopus
  38. K. A. Boyarchuk, A. V. Karelin, and R. V. Shirokov, Basic Models of the Ionized Atmosphere Kinetics, FGUP “NPP VNIIEM”, Moscow, Russia, 2006.
  39. K. Qin, L. Wu, and G. Quo, “Multi-parameters thermal anomalies before New Zealand Ms7.0 earthquake,” in Geoscience and Remote Sensing Symposium (IGARSS '11), pp. 2496–2499, 2011.
  40. L. F. Khilyuk, G. V. Chillingar, J. O. Robertson Jr., and B. Endres, Gas Migration. Events Preceding Earthquakes, Gulf Publiching Company, Houston, Tex, USA, 2000.
  41. W. S. Broecker, “An application of natural radon to problems in ocean circulation,” in Symposium on Diffusion in Oceans and Fresh Waters, pp. 116–145, Palisades, NY, USA, 1964.
  42. G. Schumann, “Radon isotopes and daughters in the atmosphere,” Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A, vol. 21, no. 2-3, pp. 149–170, 1972. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Kawabata, H. Narita, K. Harada, S. Tsunogai, and M. Kusakabe, “Air-sea gas transfer velocity in stormy winter estimated from radon deficiency,” Journal of Oceanography, vol. 59, no. 5, pp. 651–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Jacob, D. S. Suresh Babu, and K. Shivanna, “Radon as an indicator of submarine groundwater discharge in coastal regions,” Current Science, vol. 97, no. 9, pp. 1313–1320, 2009. View at Google Scholar · View at Scopus
  45. S. A. Pulinets, V. G. Bondur, M. N. Tsidilina, and M. V. Gaponova, “Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example,” Geomagnetism and Aeronomy, vol. 50, no. 2, pp. 231–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. R. W. Schunk and A. F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry, Cambridge University Press, Cambridge, UK, 2000.
  47. H. C. Koons, J. L. Roeder, and P. Rodriguez, “Plasma waves observed inside plasma bubbles in the equatorial F region,” AEROSPACE REPORT NO. TR-98(8570)-1, The Aerospace Corporation Publishing, El Segundo, Calif, USA, pp. 4577–4583, 1988.
  48. J. Park, K. W. Min, V. P. Kim et al., “Equatorial plasma bubbles with enhanced ion and electron temperatures,” Journal of Geophysical Research A, vol. 113, no. 9, Article ID A09318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. C. S. Huang, O. De La Beaujardiere, R. F. Pfaff et al., “Zonal drift of plasma particles inside equatorial plasma bubbles and its relation to the zonal drift of the bubble structure,” Journal of Geophysical Research A, vol. 115, no. 7, Article ID A07316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. S. A. Pulinets and K. G. Tsybulya, “Unique variations of the total electron content in the preparation period of Haitian earthquake (M7.9) on January 12, 2010,” Geomagnetism and Aeronomy, vol. 50, no. 5, pp. 686–689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Rishbeth, “Dynamics of the equatorial F-region,” Journal of Atmospheric and Terrestrial Physics, vol. 39, no. 9-10, pp. 1159–1168, 1977. View at Google Scholar · View at Scopus