Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012, Article ID 176895, 12 pages
http://dx.doi.org/10.1155/2012/176895
Research Article

A Prototype System for Time-Lapse Electrical Resistivity Tomographies

1DIFA, Università della Basilicata, Contrado Macchia Romana, 85100 Potenza, Italy
2IMAA-CNR, Contrada Santa Loja Zona Industriale, Tito Scalo, 85055 Potenza, Italy

Received 11 July 2011; Accepted 24 December 2011

Academic Editor: Pantelis Soupios

Copyright © 2012 Raffaele Luongo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. De Baria, V. Lapennaa, A. Perronea, C. Puglisi, and F. Sdao, “Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy),” Geomorphology, vol. 133, no. 1-2, pp. 34–46, 2011. View at Publisher · View at Google Scholar
  2. V. A. Bogoslovsky and A. A. Ogilvy, “Geophysical methods for the investigation of landslides,” Geophysics, vol. 42, no. 3, pp. 562–571, 1977. View at Google Scholar · View at Scopus
  3. J. P. T. Caris and T. W. J. Van Asch, “Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps,” Engineering Geology, vol. 31, no. 3-4, pp. 249–276, 1991. View at Google Scholar · View at Scopus
  4. F. Ferrucci, M. Amelio, M. Sorriso-Valvo, and C. Tansi, “Seismic prospecting of a slope affected by deep-seated gravitational slope deformation: the Lago Sackung, Calabria, Italy,” Engineering Geology, vol. 57, no. 1-2, pp. 53–64, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Lapenna, P. Lorenzo, A. Perrone, S. Piscitelli, E. Rizzo, and F. Sdao, “2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy,” Geophysics, vol. 70, no. 3, pp. B11–B18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Jongmans and S. Garambois, “Geophysical investigation of landslides: a review,” Bulletin de la Societe Geologique de France, vol. 178, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pfaffhuber, S. Bastani, and M. Cornée, “Multi-method high resolutiongeophysical & geotechnical quick clay mapping A.A,” Near Surface. In press.
  8. K. Sudha, M. Israil, S. Mittal, and J. Rai, “Soil characterization using electrical resistivity tomography and geotechnical investigations,” Journal of Applied Geophysics, vol. 67, no. 1, pp. 74–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Michot, Y. Benderitter, A. Dorigny, B. Nicoullaud, D. King, and A. Tabbagh, “Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography,” Water Resources Research, vol. 39, no. 5, pp. SBH141–SBH1420, 2003. View at Google Scholar
  10. D. H. Jayawickreme, R. L. van Dam, and D. W. Hyndman, “Subsurface imaging of vegetation, climate, and root-zone moisture interactions,” Geophysical Research Letters, vol. 35, no. 18, Article ID L18404, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. De Franco, G. Biella, L. Tosi et al., “Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: the Chioggia test site (Venice Lagoon, Italy),” Journal of Applied Geophysics, vol. 69, no. 3-4, pp. 117–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Brunet, R. Clément, and C. Bouvier, “Monitoring soil water content and deficit using electrical resistivity tomography (ERT)—a case study in the Cevennes area, France,” Journal of Hydrology, vol. 380, no. 1-2, pp. 146–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Arora and S. Ahmed, “Characterization of recharge through complex vadose zone of a granitic aquifer by time-lapse electrical resistivity tomography,” Journal of Applied Geophysics, vol. 73, no. 1, pp. 35–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Travelletti, P. Sailhac, J.-P. Malet, G. Grandjean, and J. Ponton, “Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography,” Hydrological Processes. In press. View at Publisher · View at Google Scholar
  15. G. Cassiani, V. Bruno, A. Villa, N. Fusi, and A. M. Binley, “A saline trace test monitored via time-lapse surface electrical resistivity tomography,” Journal of Applied Geophysics, vol. 59, no. 3, pp. 244–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Pescatore, P. Renda, and M. Tramutoli, “Rapporti tra le unità lagonegresi e le unità Sicilidi nella media valle del Basento (Appennino lucano),” Memoriali Società Geologica Italiana, vol. 41, pp. 353–361, 1988. View at Google Scholar
  17. S. Gallicchio, M. Marcucci, P. Pieri, I. Premoli Silva, L. Sabato, and G. Salvini, “Stratigraphical data from a Cretaceus claystones sequence of the “Argille Varicolori” in the Southern Apennines (Basilicata, Italy),” Palaleopelagos, vol. 6, pp. 261–272, 1996. View at Google Scholar
  18. R. Selli, “Il Paleogene nel quadro della geologia dell’Italia meridionale,” Memorie della Società Geologica Italiana, vol. 3, pp. 737–790, 1962. View at Google Scholar
  19. M. H. Loke and R. D. Barker, “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method,” Geophysical Prospecting, vol. 44, no. 1, pp. 131–152, 1996. View at Google Scholar · View at Scopus