Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012 (2012), Article ID 342581, 11 pages
http://dx.doi.org/10.1155/2012/342581
Research Article

Global Longitudinal Dependence Observation of the Neutral Wind and Ionospheric Density Distribution

Institute for Scientific Research, Boston College, Chestnut Hill, MA, USA

Received 4 November 2011; Revised 3 February 2012; Accepted 17 February 2012

Academic Editor: Y. Sahai

Copyright © 2012 Endawoke Yizengaw. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Wang, J. Lei, A. G. Burns et al., “Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model,” Geophysical Research Letters, vol. 35, no. 18, Article ID L18105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Yizengaw, M. B. Moldwin, Y. Sahai, and R. De Jesus, “Strong postmidnight equatorial ionospheric anomaly observations during magnetically quiet periods,” Journal of Geophysical Research A, vol. 114, no. 12, Article ID A12308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. L. England, S. Maus, T. J. Immel, and S. B. Mende, “Longitudinal variation of the E-region electric fields caused by atmospheric tides,” Geophysical Research Letters, vol. 33, no. 21, Article ID L21105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Sagawa, T. J. Immel, H. U. Frey, and S. B. Mende, “Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV,” Journal of Geophysical Research A, vol. 110, no. 11, Article ID A11302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. J. Immel, E. Sagawa, S. L. England et al., “Control of equatorial ionospheric morphology by atmospheric tides,” Geophysical Research Letters, vol. 33, no. 15, Article ID L15108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Scherliess, D. C. Thompson, and R. W. Schunk, “Longitudinal variability of low-latitude total electron content: tidal influences,” Journal of Geophysical Research A, vol. 113, no. 1, Article ID A01311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Lin, C. C. Hsiao, J. Y. Liu, and C. H. Liu, “Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure,” Journal of Geophysical Research A, vol. 112, no. 12, p. A12305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Liu, T. J. Immel, S. L. England, K. K. Kumar, and G. Ramkumar, “Temporal modulations of the longitudinal structure in F2 peak height in the equatorial ionosphere as observed by COSMIC,” Journal of Geophysical Research A, vol. 115, no. 4, Article ID A04303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. England, T. J. Immel, E. Sagawa et al., “Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly,” Journal of Geophysical Research A, vol. 111, no. 10, Article ID A10S19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kil, E. R. Talaat, S. J. Oh, L. J. Paxton, S. L. England, and S. Y. Su, “Wave structures of the plasma density and vertical e × B drift in low-latitude F region,” Journal of Geophysical Research A, vol. 113, no. 9, Article ID A09312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Hagan and J. M. Forbes, “Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release,” Journal of Geophysical Research D, vol. 107, no. 24, pp. 21–22, 2002. View at Publisher · View at Google Scholar
  12. M. E. Hagan, A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, “Connections between deep tropical clouds and the Earth's ionosphere,” Geophysical Research Letters, vol. 34, no. 20, Article ID L20109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. McLandress and W. E. Ward, “Tidal/gravity wave interactions and their influence on the large- scale dynamics of the middle atmosphere: model results,” Journal of Geophysical Research, vol. 99, no. 4, pp. 8139–8155, 1994. View at Google Scholar · View at Scopus
  14. H. Lühr, K. Häusler, and C. Stolle, “Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides,” Geophysical Research Letters, vol. 34, no. 16, Article ID L16102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. A. Heelis, “Electrodynamics in the low and middle latitude ionosphere: a tutorial,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 10, pp. 825–838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. L. Killeen, Q. Wu, S. C. Solomon et al., “TIMED Doppler Interferometer: overview and recent results,” Journal of Geophysical Research A, vol. 111, no. 10, Article ID A10S01, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Oberheide, Q. Wu, T. L. Killeen, M. E. Hagan, and R. G. Roble, “Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations,” Journal of Geophysical Research A, vol. 111, no. 10, Article ID A10S03, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. O. de La Beaujardière, L. Jeong, B. Basu et al., “C/NOFS: a mission to forecast scintillations,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 17, pp. 1573–1591, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Yizengaw, M. B. Moldwin, P. L. Dyson, and T. J. Immel, “Southern Hemisphere ionosphere and plasmasphere response to the interplanetary shock event of 29-31 October 2003,” Journal of Geophysical Research A, vol. 110, no. 9, Article ID A09S30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Mannucci, B. T. Tsurutani, B. A. Iijima et al., “Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Halloween Storms",” Geophysical Research Letters, vol. 32, no. 12, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Yizengaw, M. B. Moldwin, A. Komjathy, and A. J. Mannucci, “Unusual topside ionospheric density response to the November 2003 superstorm,” Journal of Geophysical Research A, vol. 111, no. 2, Article ID A02308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. W. A. Hartman and R. A. Heelis, “Longitudinal variations in the equatorial vertical drift in the topside ionosphere,” Journal of Geophysical Research A, vol. 112, no. 3, Article ID A03305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Foster, P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, “Ionospheric signatures of plasmaspheric tails,” Geophysical Research Letters, vol. 29, no. 13, article 1623, 4 pages, 2002. View at Google Scholar · View at Scopus
  24. E. Yizengaw, J. Dewar, J. MacNeil et al., “The occurrence of ionospheric signatures of plasmaspheric plumes over different longitudinal sectors,” Journal of Geophysical Research A, vol. 113, no. 8, Article ID A08318, 2008. View at Publisher · View at Google Scholar
  25. R. A. Heelis, J. J. Sojka, M. David, and R. W. Schunk, “Storm time density enhancements in the middle-latitude dayside ionosphere,” Journal of Geophysical Research A, vol. 114, no. 3, Article ID A03315, 2009. View at Publisher · View at Google Scholar · View at Scopus