Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012, Article ID 371059, 11 pages
Research Article

Geoelectric Exploration of the Purísima-Rumicruz District, Jujuy Province, Argentina

1INREMI, Facultad de Ciencias Naturales y Museo, UNLP, Calle 64 Esquina 120, 1900 La Plata, Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), 1917 Buenos Aires, Argentina
3Comisión de Investigaciones Científicas de Buenos Aires, (CICBA), 1900 La Plata, Argentina
4Universidad Nacional de La Plata, (UNLP), 1900 La Plata, Argentina

Received 29 March 2012; Revised 24 July 2012; Accepted 20 September 2012

Academic Editor: Michael S. Zhdanov

Copyright © 2012 Luciano López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. O. Seigel, “Mathematical formulation and type curves for induced polarization,” Geophysics, vol. 24, no. 3, pp. 547–565, 1959. View at Publisher · View at Google Scholar
  2. J. S. Sumner, Principles of Induced Polarization for Geophysical Exploration, Elsevier, Amsterdam, The Netherlands, 1976.
  3. J. B. Fink, E. O. McAlister, B. K. Sternberg, W. G. Wieduwilt, and S. H. Ward, Eds., Induced Polarization, Applications and Case Histories, Investigations in Geophysics, Society of Exploration Geophysicists, 1990.
  4. B. Khesin, V. Alexeyev, and L. Eppelbaum, “Rapid methods for interpretation of induced polarization anomalies,” Journal of Applied Geophysics, vol. 37, no. 2, pp. 117–130, 1997. View at Google Scholar · View at Scopus
  5. S. A. Sultan, S. A. Mansour, F. M. Santos, and A. S. Helaly, “Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt,” Journal of Geophysics and Engineering, vol. 6, no. 4, pp. 345–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Guido, S. M. Jovic, H. Echeveste, M. O. Tessone, L. Ramayo Cortes, and I. B. Schalamuk, “Polymetallic ore-shoots discovery and modelization with geoelectric surveys. Pingüino project, Deseado Massif,” Revista de la Asociacion Geologica Argentina, vol. 64, no. 3, pp. 383–390, 2009. View at Google Scholar · View at Scopus
  7. C. S. Lurgo Mayón, “Depósitos polimetálicos ricos en níquel, cobalto y arsénico de la Cordillera Oriental, Jujuy y Salta,” in Recursos Minerales de la República Argentina, E. O. Zappettini, Ed., vol. 35, pp. 999–1004, Instituto de Geología y Recursos Minerales SEGEMAR, Anales, Buenos Aires, Argentina, 1999. View at Google Scholar
  8. L. López, H. Echeveste, and I. B. Schalamuk, “Nuevos aportes en el distrito minero Purisima Rumicruz, provincia de Jujuy,” in Actas del 17th Congreso Geológico Argentino, vol. 2, pp. 607–608, 2008.
  9. M. H. Loke, “Tutorial: 2-D and 3-D electrical imaging surveys,” Geotomo Software, 1996.
  10. M. H. Loke and R. D. Barker, “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method,” Geophysical Prospecting, vol. 44, no. 1, pp. 131–152, 1996. View at Google Scholar · View at Scopus
  11. M. H. Loke, “Rapid 2-D resistivity and IP inversion using the least-squares method,” Geoelectrical Imaging 2-D and 3-D, Geotomo Software, 2001.
  12. C. Degroot-Hedlin and S. Constable, “Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data,” Geophysics, vol. 55, no. 12, pp. 1613–1624, 1990. View at Google Scholar · View at Scopus
  13. Y. Sasaki, “Resolution of resistivity tomography inferred from numerical simulation,” Geophysical Prospecting, vol. 40, no. 4, pp. 453–463, 1992. View at Google Scholar · View at Scopus
  14. C. Lepeltier, “A simplified statistical treatment of geochemical data by graphical representation,” Economic Geology, vol. 64, no. 5, pp. 538–550, 1969. View at Publisher · View at Google Scholar
  15. E. Orellana, Prospección geoeléctrica en corriente continua, Paraninfo, Madrid, Spain, 1982, Segunda edición corregida y ampliada.
  16. A. López Hidalgo, M. H. Loke, G. O. Fanton, Rubí, and E. C, “Técnicas prácticas para investigación de resistividad en dos y tres dimensiones (Tomografía Eléctrica 2D y 3D),” 2011,
  17. S. I. Giano, V. Lapenna, S. Piscitelli, and M. Schiattarella, “Electrical imaging and self-potential surveys to study the geological setting of the Quaternary slope deposits in the Agri high valley (Southern Italy),” Annali di Geofisica, vol. 43, no. 2, pp. 409–419, 2000. View at Google Scholar · View at Scopus
  18. D. Demanet, F. Renardy, K. Vanneste, D. Jongmans, T. Camelbeeck, and M. Meghraoui, “The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium,” Geophysics, vol. 66, no. 1, pp. 78–89, 2001. View at Google Scholar · View at Scopus
  19. A. Colella, V. Lapenna, and E. Rizzo, “High-resolution imaging of the High Agri Valley Basin (Southern Italy) with electrical resistivity tomography,” Tectonophysics, vol. 386, no. 1-2, pp. 29–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Y. Fazzito, A. E. Rapalini, J. M. Cortés, and C. M. Terrizzano, “Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina,” Journal of South American Earth Sciences, vol. 28, no. 3, pp. 217–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Suzuki, S. Toda, K. Kusunoki, Y. Fujimitsu, T. Mogi, and A. Jomori, “Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick Quaternary,” Engineering Geology, vol. 56, no. 1-2, pp. 29–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. S. White, S. Collins, R. Denne, R. Hee, and P. Brown, “A new survey design for 3D IP inversion modelling at Copper Hill,” Exploration Geophysics, vol. 32, no. 4, pp. 152–155, 2001. View at Publisher · View at Google Scholar
  23. R. B. Evans and A. J. Burley, Variable Frequency Induced Polarization Surveys in Western Swaziland : April to June 1968: Institite of Geological Sciences, Overseas Geological Surveys, Geophysical Division, Report, Issue 41, Overseas Geological Surveys (Great Britain), London, UK, 1969.
  24. I. Butler, D. Rickard, and S. Grimes, “Framboidal Pyrite: self Organization in the Fe–S System,” Goldschmidt, Journal of Conference Abstracts, vol. 5, pp. 276–277, 2000. View at Google Scholar
  25. J. Wong, “An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores,” Geophysics, vol. 44, no. 7, pp. 1245–1265, 1979. View at Google Scholar · View at Scopus
  26. K. Pittard and B. Bourne, “The contribution of magnetite to the induced polarization response of the Centenary orebody,” Exploration Geophysics, vol. 38, no. 3, pp. 200–207, 2007. View at Publisher · View at Google Scholar