Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012, Article ID 489634, 13 pages
Research Article

Geoelectrical Tomography Investigating and Modeling of Fractures Network around Bittit Spring (Middle Atlas, Morocco)

1Earth Sciences Department, Faculty of Sciences, Moulay Ismail University, 11201 Zitoune, Meknès 50000, Morocco
2Geosciences Rennes, Rennes 1 University, UMR CNRS 6118, Avenue GL Leclerc, Campus Beaulieu, Bat 15 CS74205, 35042 Rennes Cedex, France
3CNRS-CEREGE, Aix-Marseille University, UMR 6635 Europole de l'Arbois, BP 80, 13545 Aix en Provence, Cedex 4, France

Received 30 June 2011; Accepted 16 September 2011

Academic Editor: Pantelis Soupios

Copyright © 2012 Kh. Qarqori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Direct current Resistivity (DCR) method was carried out to characterize the hydrogeological connection between the Tabular Middle Atlas (TMA) and the Saïs Basin. The TMA is one of the most important aquifers in northern Morocco that supplies the deep aquifer of the Saïs Basin. Electrical resistivity tomography (ERT) survey was focused on the Bittit area that is one of the most important outlet discharges, and it is representative of the relations between the TMA and the Saïs Basin. The high resolution capabilities of the electrical tomography were used to define the geological draining features in the framework of water paths from the TMA to the karstic springs. The synthetic data were calculated for the similar model expected in field data inversion and inversion result of these synthetic data used as a guide for the interpretation of the inverse data resistivity sections. Joint interpretation of geophysical, geological, structural, and synthetic simulation data allowed identifying a conductive horizontal shallow layer overlying two subvertical families of fractures of NE-SW and NW-SE directions. This result leads to propose hydrological behaviour of water from the Tabular Middle Atlas and the Saïs Basin at the Bittit Spring, which takes into account for both horizontal flows through stratification joints or karst and through subvertical fractures.