Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012 (2012), Article ID 548784, 14 pages
http://dx.doi.org/10.1155/2012/548784
Research Article

Measurement of the Characteristics of TIDs Using Small and Regional Networks of GPS Receivers during the Campaign of 17–30 July of 2008

1Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467, USA
2Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA

Received 4 November 2011; Accepted 17 February 2012

Academic Editor: Y. Sahai

Copyright © 2012 Cesar E. Valladares and Matthew A. Hei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. H. Hooke, “Ionospheric irregularities produced by internal atmospheric gravity waves,” Journal of Atmospheric and Terrestrial Physics, vol. 30, no. 5, pp. 795–823, 1968. View at Google Scholar · View at Scopus
  2. T. M. Georges and W. H. Hooke, “Wave- induced fluctuations in ionospheric electron content. A model indicating some observational biases,” Journal of Geophysical Research, vol. 75, no. 31, pp. 6295–6308, 1970. View at Google Scholar · View at Scopus
  3. M. J. Davis, “The integrated ionospheric response to internal atmospheric gravity waves,” Journal of Atmospheric and Terrestrial Physics, vol. 35, no. 5, pp. 929–959, 1973. View at Google Scholar · View at Scopus
  4. M. C. Kelley and S. Fukao, “Turbulent upwelling of the mid-latitude ionosphere. II—theoretical framework,” Journal of Geophysical Research, vol. 96, pp. 3747–3753, 1991. View at Google Scholar
  5. T. L. Beach, “Total electron content variations due to nonclassical traveling ionospheric disturbances: theory and Global Positioning System observations,” Journal of Geophysical Research A, vol. 102, no. 4, pp. 7279–7292, 1997. View at Google Scholar
  6. C. A. Miller, “Electrodynamics of midlatitude spread F 1. Observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes,” Journal of Geophysical Research A, vol. 102, no. 6, pp. 11521–11532, 1997. View at Google Scholar
  7. A. R. Jacobson, R. Carlos, R. Massey, and G. Wu, “Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: seasonal and local time behavior,” Journal of Geophysical Research, vol. 100, pp. 1653–1665, 1995. View at Google Scholar
  8. P. J. Sultan, “Linear theory and modeling of the Rayleigh-Taylor instability leading to occurrence of equatorial spread F,” Journal of Geophysical Research, vol. 101, pp. 26819–26827, 1996. View at Google Scholar
  9. R. F. Woodman and C. La Hoz, “Radar observations of F region equatorial irregularities,” Journal of Geophysical Research, vol. 81, no. 31, pp. 5447–5466, 1976. View at Google Scholar · View at Scopus
  10. A. J. Scannapieco and S. L. Ossakow, “Nonlinear equatorial spread F evolution,” Geophysical Research Letters, vol. 3, pp. 451–454, 1976. View at Google Scholar
  11. M. C. Kelley, M. F. Larsen, C. LaHoz, and J. P. McClure, “Gravity wave initiation of equatorial spread F: a case study,” Journal of Geophysical Research, vol. 86, pp. 9087–9100, 1981. View at Google Scholar
  12. E. Kudeki, A. Akgiray, M. Milla, J. L. Chau, and D. L. Hysell, “Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 69, no. 17-18, pp. 2416–2427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. T. Tsunoda, “Seeding of equatorial plasma bubbles with electric fields from an Es-layer instability,” Journal of Geophysical Research A, vol. 112, no. 6, Article ID A06304, 13 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Fukao, M. Kelley, and T. Shirakawa, “Turbulent upwelling of the mid-latitude ionosphere. I- Observational results by the MU radar,” Journal of Geophysical Research, vol. 96, pp. 3725–3746, 1991. View at Google Scholar
  15. W. L. Oliver, S. Fukao, M. Sato, Y. Otsuka, T. Takami, and T. Tsuda, “Middle and upper atmosphere radar observations of the dispersion relation for ionospheric gravity waves,” Journal of Geophysical Research, vol. 100, no. 12, pp. 23763–23768, 1995. View at Google Scholar
  16. M. K. Ejiri, K. Shiokawa, T. Ogawa, K. Igarashi, T. Nakamura, and T. Tsuda, “Statistical study of short-period gravity waves on OH and OI nightglow images at two separated sites,” Journal of Geophysical Research D, vol. 108, no. 21, pp. 1–12, 2003. View at Google Scholar · View at Scopus
  17. S. Suzuki, K. Shiokawa, Y. Otsuka, T. Ogawa, and P. Wilkinson, “Statistical characteristics of gravity waves observed by an all-sky imager at Darwin, Australia,” Journal of Geophysical Research D, vol. 109, no. 20, pp. D20–DS07, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. Pimenta, M. C. Kelley, Y. Sahai, J. A. Bittencourt, and P. R. Fagundes, “Thermospheric dark band structures observed in all-sky OI 630 nm emission images over the Brazilian low-latitude sector,” Journal of Geophysical Research A, vol. 113, no. 1, Article ID A01307, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. M. Amorim, A. A. Pimenta, J. A. Bittencourt, and P. R. Fagundes, “Long-term study of medium-scale traveling ionospheric disturbances using O i 630 nm all-sky imaging and ionosonde over Brazilian low latitudes,” Journal of Geophysical Research A, vol. 116, no. 6, Article ID A06312, 7 pages, 2011. View at Publisher · View at Google Scholar
  20. K. Shiokawa, C. Ihara, Y. Otsuka, and T. Ogawa, “Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images,” Journal of Geophysical Research A, vol. 108, no. 1, article 1052, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Bougeret, “Some effects produced by the ionosphere on radio interferometry—fluctuations in apparent source position and image distortion,” Astronomy & Astrophysics, vol. 96, pp. 259–266, 1981. View at Google Scholar
  22. C. Mercier, “Observations of atmospheric gravity waves by radiointerferometry,” Journal of Atmospheric and Terrestrial Physics, vol. 48, no. 7, pp. 605–624, 1986. View at Google Scholar · View at Scopus
  23. A. R. Jacobson and W. C. Erickson, “A method for characterizing transient ionospheric disturbances using a large radio telescope array,” Astronomy & Astrophysics, vol. 257, pp. 401–409, 1992. View at Google Scholar
  24. C. E. Valladares, J. Villalobos, M. A. Hei et al., “Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres,” Annales Geophysicae, vol. 27, no. 4, pp. 1501–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. C. Kelley, The Earth’s Ionosphere, Academic Press, London, UK, 1989.
  26. M. W. Kirkland and A. R. Jacobson, “Drift-parallax determination of the altitude of traveling ionospheric disturbances observed with the Los Alamos radio-beacon interferometer,” Radio Science, vol. 33, no. 6, pp. 1807–1825, 1998. View at Google Scholar · View at Scopus
  27. S. L. Vadas, “Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources,” Journal of Geophysical Research A, vol. 112, no. 6, Article ID A06305, 23 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. L. Afraimovich, K. S. Palamartchouk, and N. P. Perevalova, “GPS radio interferometry of travelling ionospheric disturbances,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 60, no. 12, pp. 1205–1223, 1998. View at Google Scholar · View at Scopus
  29. E. L. Afraimovich, E. A. Kosogorov, L. A. Leonovich, K. S. Palamartchouk, N. P. Perevalova, and O. M. Pirog, “Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 62, no. 7, pp. 553–565, 2000. View at Google Scholar · View at Scopus
  30. E. L. Afraimovich, N. P. Perevalova, and S. V. Voyeikov, “Traveling wave packets of total electron content disturbances as deduced from global GPS network data,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 11–13, pp. 1245–1262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. D. C. Fritts, M. A. Abdu, B. R. Batista et al., “Overview and summary of the Spread F Experiment (SpreadFEx),” Annales Geophysicae, vol. 27, pp. 2141–2155, 2009. View at Google Scholar
  32. E. Sardón and N. Zarraoa, “Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases?” Radio Science, vol. 32, no. 5, pp. 1899–1910, 1997. View at Google Scholar · View at Scopus
  33. C. Mercier and A. R. Jacobson, “Observations of atmospheric gravity waves by radio interferometry: are results biased by the observational technique?” Annales Geophysicae, vol. 15, no. 4, pp. 430–442, 1997. View at Google Scholar · View at Scopus
  34. K. Hocke and K. Schlegel, “A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995,” Annales Geophysicae, vol. 14, no. 9, pp. 917–940, 1996. View at Google Scholar · View at Scopus
  35. J. K. Hargreaves, The Solar-Terrestrial Environment: An Introduction to Geospace, Cambridge University Press, Cambridge, UK, 1992.
  36. E. A. Kherani, M. A. Abdu, E. R. D. De Paula, D. C. Fritts, J. H. A. Sobral, and F. C. de Meneses Jr., “The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial bubble,” Annales Geophysicae, vol. 27, no. 4, pp. 1657–1668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. C. Fritts, S. L. Vadas, D. M. Riggin et al., “Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx),” Annales Geophysicae, vol. 26, no. 11, pp. 3235–3252, 2008. View at Google Scholar · View at Scopus
  38. M. A. Hei, R. A. Heelis, and J. P. McClure, “Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions,” Journal of Geophysical Research, vol. 110, Article ID A12315, 13 pages, 2005. View at Publisher · View at Google Scholar