Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2012, Article ID 608269, 7 pages
http://dx.doi.org/10.1155/2012/608269
Research Article

Ground-Penetrating Radar Investigations along Hajipur Fault: Himalayan Frontal Thrust—Attempt to Identify Near Subsurface Displacement, NW Himalaya, India

Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

Received 3 November 2011; Accepted 25 January 2012

Academic Editor: Raffaele Solimene

Copyright © 2012 Javed N. Malik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. P. Solonenko, “Paleoseismogeology,” Izvestiya, Academy of Sciences, USSR, Physics of the Solid Earth, vol. 9, pp. 3–16, 1973. View at Google Scholar
  2. K. Sieh, “Pre-historic large earthquakes produced by slip on the San Andreas Fault at Pallett Creek,” Journal of Geophysical Research, vol. 83, pp. 3907–3939, 1978. View at Google Scholar
  3. R. E. Wallace, “Active faults, Palaeoseismology, and earthquake hazards in the Western United States,” in Earthquake Prediction. An International Review, D. W. Simpson and P. G. Richards, Eds., pp. 209–216, American Geophysical Union, Washington, DC, USA, 1981. View at Google Scholar
  4. R. E. Wallace, “Variations in slip rates, migration, and grouping of slip events on faults in the Great Basin Province,” Bulletin of Seismological Society of America, vol. 77, pp. 868–876, 1987. View at Google Scholar
  5. D. P. Schwartz and K. J. Coppersmith, “Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones (USA),” Journal of Geophysical Research, vol. 89, no. 7, pp. 5681–5698, 1984. View at Google Scholar · View at Scopus
  6. C. R. Allen, “Seismological and paleoseismological techniques of research in active tectonics,” in Active Tectonics, R. E. Wallace, Ed., pp. 148–154, National Academy Press, Washington, DC, USA, 1986. View at Google Scholar
  7. J. P. Mc Calpin, Ed., Paleoseismology, Academic Press, San Diego, Calif, USA, 1996.
  8. R. S. Yeats, K. Sieh, and C. R. Allen, Geology of Earthquakes, Oxford University Press, 1997.
  9. R. S. Yeats and V. C. Thakur, “Reassessment of earthquake hazard based on a fault-bend fold model of the Himalayan plate-boundary fault,” Current Science, vol. 74, no. 3, pp. 230–233, 1998. View at Google Scholar · View at Scopus
  10. K. B. Anderson, J. A. Spotila, and J. A. Hole, “Application of geomorphic analysis and ground-penetrating radar to characterization of paleoseismic sites in dynamic alluvial environments: an example from southern California,” Tectonophysics, vol. 368, no. 1–4, pp. 25–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. N. Malik and C. Mohanty, “Active tectonic influence on the evolution of drainage and landscape: geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India,” Journal of Asian Earth Sciences, vol. 29, no. 5-6, pp. 604–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Neal, “Ground-penetrating radar and its use in sedimentology: principles, problems and progress,” Earth-Science Reviews, vol. 66, no. 3-4, pp. 261–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. Busby and J. W. Merritt, “Quaternary deformation mapping with ground penetrating radar,” Journal of Applied Geophysics, vol. 41, no. 1, pp. 75–91, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Liu and Y. Li, “Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA,” Journal of Applied Geophysics, vol. 47, no. 3-4, pp. 199–215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Audru, M. Bano, J. Begg, K. Berryman, S. Henryys, and B. Niviere, “GPR investigations on active faults in urban areas: the Georisc-NZ project in Wellington, New Zealand,” Comptes Rendus de l’Académie des Sciences-Series IIA- Earth and Planetary Science, vol. 333, no. 8, pp. 447–454, 2001. View at Google Scholar
  16. R. Gross, A. Green, K. Holliger, H. Horstmeyer, and J. Baldwin, “Shallow geometry and displacements on the San Andreas fault near Point Arena based on trenching and 3-D georadar surveying,” Geophysical Research Letters, vol. 29, no. 20, pp. 34–1, 2002. View at Google Scholar · View at Scopus
  17. A. Green, R. Gross, K. Holliger, H. Horstmeyer, and J. Baldwin, “Results of 3-D georadar surveying and trenching the San Andreas fault near its northern landward limit,” Tectonophysics, vol. 368, no. 1–4, pp. 7–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Slater and T. M. Niemi, “Ground-penetrating radar investigation of active faults along the Dead Sea Transform and implications for seismic hazards within the city of Aqaba, Jordan,” Tectonophysics, vol. 368, no. 1–4, pp. 33–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. Alasset and M. Meghraoui, “Active faulting in the western Pyrénées (France): paleoseismic evidence for late Holocene ruptures,” Tectonophysics, vol. 409, no. 1–4, pp. 39–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. N. Malik, A. A. Shah, A. K. Sahoo et al., “Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India,” Tectonophysics, vol. 483, no. 3-4, pp. 327–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. K. Sternberg and J. W. McGill, “Archaeology studies in southern Arizona using ground penetrating radar,” Journal of Applied Geophysics, vol. 33, no. 1–3, pp. 209–225, 1995. View at Google Scholar · View at Scopus
  22. B. M. Whiting, D. P. McFarland, and S. Hackenberger, “Three-dimensional GPR study of a prehistoric site in Barbados, West Indies,” Journal of Applied Geophysics, vol. 47, no. 3-4, pp. 217–226, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. N. Malik, A. K. Sahoo, and A. A. Shah, “Ground-penetrating radar investigation along Pinjore Garden Fault: implication toward identification of shallow subsurface deformation along active fault, NW Himalaya,” Current Science, vol. 93, no. 10, pp. 1422–1427, 2007. View at Google Scholar · View at Scopus
  24. S. Satuluri, “Ground penetrating radar application in archaeological investigations at ahichhatra, bareilly (Distt),” M.Tech Dissertation Report, Department of Civil Engineering, Indian Institute of Technology, Kanpur, India, 2009. View at Google Scholar
  25. J. N. Malik, A. K. Sahoo, A. A. Shah, D. P. Shinde, N. Juyal, and A. K. Singhvi, “Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: implications of the faulting pattern on landscape evolution and seismic hazard,” Journal of Structural Geology, vol. 32, no. 3, pp. 350–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Seeber and J. G. Armbruster, “Great detachment earthquakes along the Himalayan arc and long-term forecasting,” in Earthquake Prediction. An International Review, D. W. Simpson and P. G. Richards, Eds., vol. 4 of Maurice Ewing Series, pp. 259–279, AGU, 1981. View at Google Scholar
  27. N. Ambraseys and R. Bilham, “A note on the Kangra Ms = 7.8 earthquake of 4 April 1905,” Current Science, vol. 79, no. 1, pp. 45–50, 2000. View at Google Scholar · View at Scopus
  28. N. N. Ambraseys and J. Douglas, “Magnitude calibration of north Indian earthquakes,” Geophysical Journal International, vol. 159, no. 1, pp. 165–206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Bristow and H. M. Jol, Ground Penetrating Radar in Sediments, NO. 211, Geological Society, London, UK, 2003.
  30. Jol H. M., Ground Penetrating Radar: Theory and Applications, Elsevier Scientific, Oxford, UK, 2009.
  31. J. Chow, J. Angelier, J. J. Hua, J. C. Lee, and R. Sun, “Paleoseismic event and active faulting: from ground penetrating radar and high-resolution seismic reflection profiles across the Chihshang Fault, eastern Taiwan,” Tectonophysics, vol. 333, no. 1-2, pp. 241–259, 2001. View at Publisher · View at Google Scholar · View at Scopus