Table of Contents Author Guidelines Submit a Manuscript
International Journal of Geophysics
Volume 2013 (2013), Article ID 160915, 8 pages
Research Article

Preliminary Results of Marine Electromagnetic Sounding with a Powerful, Remote Source in Kola Bay off the Barents Sea

1Kola Science Centre, Polar Geophysical Institute, Russian Academy of Science, Murmansk, 15 Khalturina Street, Murmansk 183010, Russia
2Geoelectromagnetic Research Centre of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, P.O. Box 30, Troitsk, Moscow Region 142190, Russia
3Kurchatov Institute, Moscow, 1 Akademika Kurchatova Square, Moscow 123182, Russia
4Moscow State University, Moscow, GSP-1 Leninskie Gory, Moscow 119991, Russia
5Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, St. Petersburg Branch, 1 Mendeleevskaya Linia, St. Petersburg 199034, Russia

Received 28 September 2012; Accepted 30 December 2012

Academic Editor: Michael S. Zhdanov

Copyright © 2013 Valery Grigoryev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Key, “Marine electromagnetic studies of seafloor resources and tectonics,” Surveys in Geophysics, vol. 33, no. 1, pp. 135–167, 2011. View at Google Scholar
  2. K. A. Weitemeyer, S. Constable, and A. M. Tréhu, “A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon,” Geophysical Journal International, vol. 187, pp. 45–62, 2011. View at Publisher · View at Google Scholar
  3. R. L. Evans, M. C. Sinha, S. C. Constable, and M. J. Unsworth, “On the electrical nature of the axial melt zone at 13°N on the East Pacific Rise,” Journal of Geophysical Research B, vol. 99, no. 1, pp. 577–588, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Constable and C. S. Cox, “Marine controlled-source electromagnetic sounding 2. The PEGASUS experiment,” Journal of Geophysical Research B, vol. 101, no. 3, pp. 5519–5530, 1996. View at Google Scholar · View at Scopus
  5. L. MacGregor and M. Sinha, “Use of marine controlled-source electromagnetic sounding for sub-basalt exploration,” Geophysical Prospecting, vol. 48, no. 6, pp. 1091–1106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. L. MacGregor, M. Sinha, and S. Constable, “Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine Controlled-Source electromagnetic sounding,” Geophysical Journal International, vol. 146, no. 1, pp. 217–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ellingsrud, T. Eidesmo, S. Johansen, M. C. Sinha, L. M. MacGregor, and S. Constable, “Remote sensing of hydrocarbon layers by seabed logging (SBL): results from a cruise offshore Angola,” Leading Edge, vol. 21, no. 10, pp. 972–982, 2002. View at Google Scholar · View at Scopus
  8. M. C. Sinha, P. D. Patel, M. J. Unsworth, T. R. E. Owen, and M. R. G. Maccormack, “An active source electromagnetic sounding system for marine use,” Marine Geophysical Researches, vol. 12, no. 1-2, pp. 59–68, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. M. N. Berdichevsky, O. N. Zhdanova, and M. S. Zhdanov, Marine Deep Geoelectrics, Nauka, Moscow, Russia, 1989.
  10. E. P. Velikhov, V. F. Grigor’v, M. S. Zhdanov et al., “Electromagnetic sounding of the Kola Peninsula with a powerful extremely low frequency source,” Doklady Earth Sciences, vol. 438, no. 1, pp. 711–716, 2011. View at Publisher · View at Google Scholar
  11. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, 1978. View at Google Scholar · View at Scopus
  12. E. P. Velikhov, Ed., Geoelectrical Studies with a Powerful Current Source on the Baltic Shield, Nauka, Moscow, Russia, 1989.
  13. A. A. Kovtun, S. A. Vagin, I. L. Vardanjants, E. L. Kokvina, and N. I. Uspenskiy, “Magnetotelluric study of the structure of the crust and mantle of the eastern part of the Baltic Shield,” Izvestiya—Physics of the Solid Earth, no. 3, pp. 32–36, 1994. View at Google Scholar
  14. A. A. Zhamaletdinov, “Graphite in the Earth's crust and electrical conductivity anomalies,” Izvestiya—Physics of the Solid Earth, vol. 32, no. 4, pp. 272–288, 1996. View at Google Scholar · View at Scopus
  15. L. L. Vanjan and N. I. Pavlenkova, “Layer of low velocity and high electrical conductivity at the base of the upper crust of the Baltic Shield:,” Izvestiya—Physics of the Solid Earth, no. 1, pp. 37–45, 2002. View at Google Scholar
  16. E. V. Spiridonov, Paleoseismodislocations on the coast of the Barents Sea [Ph.D. thesis], MSU, Moscow, Russia, 2007.
  17. E. A. Kovalchuk and E. V. Shipilov, “The first data about the structure and lithology of the section of the Kola Fjord sediments,” in Proceedings of the International Scientific Conference on the 100th Anniversary of D. G. Panov, pp. 157–160, SSC Academy of Sciences, Rostov-on-Don, Russia, 2009.
  18. F. P. Mitrofanov, Ed., Geological Map of the Kola Region, Scale 1:500000. 2001. Apatity.
  19. M. S. Zhdanov, Geophysical Inverse Theory and Regularization Problems, Elsevier, Amsterdam, The Netherlands, 2002.