Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2011 (2011), Article ID 154541, 11 pages
http://dx.doi.org/10.4061/2011/154541
Review Article

Treatment of Liver Metastases in Patients with Neuroendocrine Tumors: A Comprehensive Review

1Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Suite No. 404D, Houston, TX 77030, USA
2Division of Abdominal Transplantation, The Liver Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 1709 Dryden Street, Suite No. 1500, Houston, TX 77030, USA

Received 15 July 2011; Accepted 10 August 2011

Academic Editor: Dan Granberg

Copyright © 2011 Theresa R. Harring et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Frilling, G. C. Sotiropoulos, J. Li, O. Kornasiewicz, and U. Plöckinger, “Multimodal management of neuroendocrine liver metastases,” HPB, vol. 12, no. 6, pp. 361–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Mayo, M. C. de Jong, M. Bloomston et al., “Surgery versus intra-arterial therapy for neuroendocrine liver metastasis: a multicenter international analysis,” Annals of Surgical Oncology. In press.
  3. D. C. Madoff, S. Gupta, K. Ahrar, R. Murthy, and J. C. Yao, “Update on the management of neuroendocrine hepatic metastases,” Journal of Vascular and Interventional Radiology, vol. 17, no. 8, pp. 1235–1250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. G. Schurr, T. Strate, K. Rese et al., “Aggressive surgery improves long-term survival in neuroendocrine pancreatic tumors,” Annals of Surgery, vol. 245, no. 2, pp. 273–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Frilling, J. Li, E. Malamutmann, K. W. Schmid, A. Bockisch, and C. E. Broelsch, “Treatment of liver metastases from neuroendcorine tumors in relation to the extent of hepatic disease,” The British Journal of Surgery, vol. 96, no. 2, pp. 175–184, 2009. View at Google Scholar
  6. E. S. Glazer, J. F. Tseng, W. Al-Refaie et al., “Long-term survival after surgical management of neuroendocrine hepatic metastases,” HPB, vol. 12, no. 6, pp. 427–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Cho, D. M. Labow, L. Tang et al., “Histologic grade is correlated with outcome after resection of hepatic neuroendocrine neoplasms,” Cancer, vol. 113, no. 1, pp. 126–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. P. McEntee, D. M. Nagorney, L. K. Kvols, C. G. Moertel, and C. S. Grant, “Cytoreductive hepatic surgery for neuroendocrine tumors,” Surgery, vol. 108, no. 6, pp. 1091–1096, 1990. View at Google Scholar · View at Scopus
  9. D. Elias, P. Lasser, M. Ducreux et al., “Liver resection (and associated extrahepatic resections) for metastatic well-differentiated endocrine tumors: a 15-year single center prospective study,” Surgery, vol. 133, no. 4, pp. 375–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Saxena, T. C. Chua, A. Sarkar et al., “Progression and survival results after radical hepatic metastasectomy of indolent advanced neuroendocrine neoplasms (NENs) supports an aggressive surgical approach,” Surgery, vol. 149, no. 2, pp. 209–220, 2011. View at Publisher · View at Google Scholar
  11. Z. Yang, L. H. Tang, and D. S. Klimstra, “Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification,” The American Journal of Surgical Pathology, vol. 35, no. 6, pp. 853–860, 2011. View at Publisher · View at Google Scholar
  12. A. Frilling, J. Li, E. Malamutmann, K. W. Schmid, A. Bockisch, and C. E. Broelsch, “Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease,” The British Journal of Surgery, vol. 96, no. 2, pp. 175–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Steinmüller, R. Kianmanesh, M. Falconi et al., “Consensus guidelines for the management of patients with liver metastases from digestive (neuro)endocrine tumors: foregut, midgut, hindgut, and unknown primary,” Neuroendocrinology, vol. 87, no. 1, pp. 47–62, 2007. View at Publisher · View at Google Scholar
  14. R. S. Chamberlain, D. Canes, K. T. Brown et al., “Hepatic neuroendocrine metastases: does intervention alter outcomes?” Journal of the American College of Surgeons, vol. 190, no. 4, pp. 432–445, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Lehnert, “Liver transplantation for metastatic neuroendocrine carcinoma: an analysis of 103 patients,” Transplantation, vol. 66, no. 10, pp. 1307–1312, 1998. View at Google Scholar · View at Scopus
  16. Y. P. Treut, E. Grégoire, J. Belghiti et al., “Predictors of long-term survival after liver transplantation for metastatic endocrine tumors: an 85-case French multicentric report,” The American Journal of Transplantation, vol. 8, no. 6, pp. 1205–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Máthé, E. Tagkalos, A. Paul et al., “Liver transplantation for hepatic metastases of neuroendocrine pancreatic tumors: a survival-based analysis,” Transplantation, vol. 91, no. 5, pp. 575–582, 2011. View at Publisher · View at Google Scholar
  18. J. Rosenau, M. J. Bahr, R. Von Wasielewski et al., “Ki67, e-cadherin, and p53 as prognostic indicators of long-term outcome after liver transplantation for metastatic neuroendocrine tumors,” Transplantation, vol. 73, no. 3, pp. 386–394, 2002. View at Google Scholar · View at Scopus
  19. S. K. Reddy and B. M. Clary, “Neuroendocrine liver metastases,” Surgical Clinics of North America, vol. 90, no. 4, pp. 853–861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Ahlman, S. Friman, C. Cahlin et al., “Liver transplantation for treatment of metastatic neuroendocrine tumors,” Annals of the New York Academy of Sciences, vol. 1014, pp. 265–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Y. Akyildiz, J. Mitchell, M. Milas, A. Siperstein, and E. Berber, “Laparoscopic radiofrequency thermal ablation of neuroendocrine hepatic metastases: long-term follow-up,” Surgery, vol. 148, no. 6, pp. 1288–1293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. J. Mazzaglia, E. Berber, M. Milas, and A. E. Siperstein, “Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival,” Surgery, vol. 142, no. 1, pp. 10–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. T. Hoffmann, P. Paprottka, T. F. Jakobs, C. G. Trumm, and M. F. Reiser, “Arterial therapies of non-colorectal cancer metastases to the liver (from chemoembolization to radioembolization),” Abdominal Imaging. In press. View at Publisher · View at Google Scholar
  24. T. J. Vogl, N. N. N. Naguib, S. Zangos, K. Eichler, A. Hedayati, and N. E. A. Nour-Eldin, “Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation,” European Journal of Radiology, vol. 72, no. 3, pp. 517–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. Pitt, J. Knuth, J. M. Keily et al., “Hepatic neuroendocrine metastases: chemo- or bland embolization?” Journal of Gastrointestinal Surgery, vol. 12, no. 11, pp. 1951–1960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. S. Ho, J. Picus, M. D. Darcy et al., “Long-term outcome after chemoembolization and embolization of hepatic metastatic lesions from neuroendocrine tumors,” The American Journal of Roentgenology, vol. 188, no. 5, pp. 1201–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. P. Kamat, S. Gupta, J. E. Ensor et al., “Hepatic arterial embolization and chemoembolization in the management of patients with large-volume liver metastases,” CardioVascular and Interventional Radiology, vol. 31, no. 2, pp. 299–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Kress, H. J. Wagner, M. Wied, K. J. Klose, R. Arnold, and H. Alfke, “Transarterial chemoembolization of advanced liver metastases of neuroendocrine tumors—a retrospective single-center analysis,” Digestion, vol. 68, no. 2-3, pp. 94–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Gupta, M. M. Johnson, R. Murthy et al., “Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors,” Cancer, vol. 104, no. 8, pp. 1590–1602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Christante, S. Pommier, B. Givi, and R. Pommier, “Hepatic artery chemoinfusion with chemoembolization for neuroendocrine cancer with progressive hepatic metastases despite octreotide therapy,” Surgery, vol. 144, no. 6, pp. 885–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Saxena, T. C. Chua, L. Bester, A. Kokandi, and D. L. Morris, “Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases,” Annals of Surgery, vol. 251, no. 5, pp. 910–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Y. Kang, M. S. Choi, S. J. Kim et al., “Long-term outcome of preoperative transarterial chemoembolization and hepatic resection in patients with hepatocellular carcinoma,” The Korean Journal of Hepatology, vol. 16, no. 4, pp. 383–388, 2010. View at Publisher · View at Google Scholar
  33. M. Martin, D. Tarara, Y. M. Wu et al., “Intrahepatic arterial chemoembolization for hepatocellular carcinoma and metastatic neuroendocrine tumors in the era of liver transplantation,” The American Surgeon, vol. 62, no. 9, pp. 724–732, 1996. View at Google Scholar · View at Scopus
  34. M. Z. Hao, H. L. Lin, Q. Chen, H. Wu, W. C. Yu, and T. G. Chen, “Efficacy of transcatheter arterial chemoembolization combined thalidomide on hepatocellular carcinoma: a controlled randomized trial,” Ai Zheng, vol. 26, no. 8, pp. 861–865, 2007. View at Google Scholar · View at Scopus
  35. G. Deng, D.-L. Zhao, G.-C. Li, H. Yu, and G.-J. Teng, “Combination therapy of transcatheter arterial chemoembolization and arterial administration of antiangiogenesis on VX2 liver tumor,” CardioVascular and Interventional Radiology, vol. 34, no. 4, pp. 824–832, 2011. View at Publisher · View at Google Scholar
  36. R. Murthy, P. Kamat, R. Nunez et al., “Yttrium-90 microsphere radioembolotherapy of hepatic metastatic neuroendocrine carcinomas after hepatic arterial embolization,” Journal of Vascular and Interventional Radiology, vol. 19, no. 1, pp. 145–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. King, R. Quinn, D. M. Glenn et al., “Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases,” Cancer, vol. 113, no. 5, pp. 921–929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. S. Kennedy, W. A. Dezarn, P. McNeillie et al., “Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients,” The American Journal of Clinical Oncology, vol. 31, no. 3, pp. 271–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. G. Touzios, J. M. Kiely, S. C. Pitt et al., “Neuroendocrine hepatic metastases,” Annals of Surgery, vol. 241, no. 5, pp. 776–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. C. J. Auernhammer and B. Göke, “Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin,” Gut, vol. 60, no. 7, pp. 1009–1021, 2011. View at Publisher · View at Google Scholar
  41. J. R. Strosberg, A. Cheema, and L. K. Kvols, “A review of systemic and liver-directed therapies for metastatic neuroendocrine tumors of the gastroenteropancreatic tract,” Cancer Control, vol. 18, no. 2, pp. 127–137, 2011. View at Google Scholar
  42. D. J. Kwekkeboom, E. P. Krenning, R. Lebtahi et al., “ENETS consensus guidelines for the standards of care in neuroendocrine tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs,” Neuroendocrinology, vol. 90, no. 2, pp. 220–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. G. A. Kaltsas, D. Papadogias, P. Makras, and A. B. Grossman, “Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues,” Endocrine-Related Cancer, vol. 12, no. 4, pp. 683–699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Khasraw, A. Gill, T. Harrington, N. Pavlakis, and I. Modlin, “Management of advanced neuroendocrine tumors with hepatic metastasis,” Journal of Clinical Gastroenterology, vol. 43, no. 9, pp. 838–847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. van Essen, E. P. Krenning, M. de Jong, R. Valkema, and D. J. Kwekkeboom, “Peptide Receptor Radionuclide Therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours,” Acta Oncologica, vol. 46, no. 6, pp. 723–734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. L. Bushnell, T. M. O'Dorisio, M. S. O'Dorisio et al., “90Y-edotreotide for metastatic carcinoid refractory to octreotide,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1652–1659, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. J. Kwekkeboom, W. W. De Herder, B. L. Kam et al., “Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival,” Journal of Clinical Oncology, vol. 26, no. 13, pp. 2124–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. van Essen, E. P. Krenning, B. L. R. Kam, W. W. De Herder, R. A. Feelders, and D. J. Kwekkeboom, “Salvage therapy with 177Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors,” Journal of Nuclear Medicine, vol. 51, no. 3, pp. 383–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Srirajaskanthan, I. Kayani, A. M. Quigley, J. Soh, M. E. Caplin, and J. Bomanji, “The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy,” Journal of Nuclear Medicine, vol. 51, no. 6, pp. 875–882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. A. Kouvaraki, J. A. Ajani, P. Hoff et al., “Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas,” Journal of Clinical Oncology, vol. 22, no. 23, pp. 4762–4771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. R. K. Ramanathan, A. Cnaan, R. G. Hahn, P. P. Carbone, and D. G. Haller, “Phase II trial dacarbazine (DTIC) in advanced pancreatic islet cell carcinoma. Study of the Eastern Cooperative Oncology Group-E6282,” Annals of Oncology, vol. 12, no. 8, pp. 1139–1143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. M. H. Kulke, K. Stuart, P. C. Enzinger et al., “Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors,” Journal of Clinical Oncology, vol. 24, no. 3, pp. 401–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. R. Strosberg, R. L. Fine, J. Choi et al., “First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas,” Cancer, vol. 117, no. 2, pp. 268–275, 2011. View at Publisher · View at Google Scholar
  54. E. Mitry, E. Baudin, M. Ducreux et al., “Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin,” The British Journal of Cancer, vol. 81, no. 8, pp. 1351–1355, 1999. View at Google Scholar · View at Scopus
  55. C. G. Moertel, L. K. Kvols, M. J. O'Connell, and J. Rubin, “Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms,” Cancer, vol. 68, no. 2, pp. 227–232, 1991. View at Publisher · View at Google Scholar · View at Scopus
  56. M. L. Fjällskog, D. P. K. Granberg, S. L. V. Welin et al., “Treatment with cisplatin and etoposide in patients with neuroendocrine tumors,” Cancer, vol. 92, no. 5, pp. 1101–1107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Bajetta, L. Catena, G. Procopio et al., “Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours?” Cancer Chemotherapy and Pharmacology, vol. 59, no. 5, pp. 637–642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. S.-J. Kim, J. W. Kim, S. W. Han et al., “Biological characteristics and treatment outcomes of metastatic or recurrent neuroendocrine tumors: tumor grade and metastatic site are important for treatment strategy,” BMC Cancer, vol. 10, no. 1, article 448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Maurer and J. C. Reubi, “Somatostatin receptors,” Journal of the American Medical Association, vol. 253, no. 18, p. 2741, 1985. View at Google Scholar · View at Scopus
  60. C. Bousquet, E. Puente, L. Buscail, N. Vaysse, and C. Susini, “Antiproliferative effect of somatostatin and analogs,” Chemotherapy, vol. 47, supplement 2, pp. 30–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. L. K. Kvols, C. G. Moertel, and M. J. O'Connell, “Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue,” The New England Journal of Medicine, vol. 315, no. 11, pp. 663–666, 1986. View at Google Scholar · View at Scopus
  62. M. H. Kulke, “Clinical presentation and management of carcinoid tumors,” Hematology/Oncology Clinics of North America, vol. 21, no. 3, pp. 433–455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. O. Nilsson, L. Kölby, B. Wängberg et al., “Comparative studies on the expression of somatostatin receptor subtypes, outcome of octreotide scintigraphy and response to octreotide treatment in patients with carcinoid tumours,” The British Journal of Cancer, vol. 77, no. 4, pp. 632–637, 1998. View at Google Scholar · View at Scopus
  64. A. Vinik and A. R. Moattari, “Use of somatostatin analog in management of carcinoid syndrome,” Digestive Diseases and Sciences, vol. 34, supplement 3, pp. 14S–27S, 1989. View at Google Scholar · View at Scopus
  65. K. Oberg, I. Norheim, and E. Theodorsson, “Treatment of malignant midgut carcinoid tumours with a long-acting somatostatin analogue octreotide,” Acta Oncologica, vol. 30, no. 4, pp. 503–507, 1991. View at Google Scholar · View at Scopus
  66. L. Saltz, B. Trochanowski, M. Buckley et al., “Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors,” Cancer, vol. 72, no. 1, pp. 244–248, 1993. View at Google Scholar · View at Scopus
  67. E. T. Janson and K. Oberg, “Long-term management of the carcinoid syndrome,” Acta Oncologica, vol. 32, no. 2, pp. 225–229, 1993. View at Google Scholar · View at Scopus
  68. D. O'Toole, M. Ducreux, G. Bommelaer et al., “Treatment of carcinoid syndrome: a prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance,” Cancer, vol. 88, no. 4, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. A. C. Gulanikar, G. Kotylak, and H. Bitter-Suermann, “Does immunosuppression alter the growth of metastatic liver carcinoid after orthotopic liver transplantation?” Transplantation Proceedings, vol. 23, no. 4, pp. 2197–2198, 1991. View at Google Scholar · View at Scopus
  70. L. Kölby, G. Persson, S. Franzén, and B. Ahrén, “Randomized clinical trial of the effect of interferon? On survival in patients with disseminated midgut carcinoid tumours,” The British Journal of Surgery, vol. 90, no. 6, pp. 687–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. L. Welin, E. T. Janson, A. Sundin et al., “High-dose treatment with a long-acting somatostatin analogue in patients with advanced midgut carcinoid tumours,” European Journal of Endocrinology, vol. 151, no. 1, pp. 107–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. I. M. Modlin, M. Pavel, M. Kidd, and B. I. Gustafsson, “Review article: somatostatin analogs in the treatment of gastro-entero-pancreatic neuroendocrine (carcinoid) tumors,” Alimentary Pharmacology & Therapeutics, vol. 31, pp. 169–188, 2009. View at Google Scholar
  73. A. Rinke, H. H. Müller, C. Schade-Brittinger et al., “Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group,” Journal of Clinical Oncology, vol. 27, no. 28, pp. 4656–4663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Frank, K. J. Klose, M. Wied, N. Ishaque, C. Schade-Brittinger, and R. Arnold, “Combination therapy with octreotide and α-interferon: effect on tumor growth in metastatic endocrine gastroenteropancreatic tumors,” The American Journal of Gastroenterology, vol. 94, no. 5, pp. 1381–1387, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. E. A. Woltering, P. M. Mamikunian, S. Zietz et al., “Effect of octreotide LAR dose and weight on octreotide blood levels in patients with neuroendocrine tumors,” Pancreas, vol. 31, no. 4, pp. 392–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Strosberg and L. Kvols, “Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors,” World Journal of Gastroenterology, vol. 16, no. 24, pp. 2963–2970, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Öberg, “Future aspects of somatostatin-receptor-mediated therapy,” Neuroendocrinology, vol. 80, supplement 1, pp. 57–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. D. I. Jodrell and I. E. Smith, “Carboplatin in the treatment of metastatic carcinoid tumours and paraganglioma: a phase II study,” Cancer Chemotherapy and Pharmacology, vol. 26, no. 1, pp. 62–64, 1990. View at Google Scholar · View at Scopus
  79. K. M. Detjen, M. Welzel, K. Farwig et al., “Molecular mechanism of interferon alfa-mediated growth inhibition in human neuroendocrine tumor cells,” Gastroenterology, vol. 118, no. 4, pp. 735–748, 2000. View at Google Scholar · View at Scopus
  80. L. J. Hofland, W. W. De Herder, M. Waaijers et al., “Interferon-α-2a is a potent inhibitor of hormone secretion by cultured human pituitary adenomas,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 9, pp. 3336–3343, 1999. View at Google Scholar · View at Scopus
  81. J. P. Boudreaux, D. S. Klimstra, M. M. Hassan et al., “The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the jejunum, ileum, appendix, and cecum,” Pancreas, vol. 39, no. 6, pp. 753–766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. U. Plöckinger and B. Wiedenmann, “Biotherapy,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 21, no. 1, pp. 145–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Arnold, A. Rinke, K. J. Klose et al., “Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial,” Clinical Gastroenterology and Hepatology, vol. 3, no. 8, pp. 761–771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Faiss, H. Scherübl, E. O. Riecken, and B. Wiedenmann, “Interferon-α versus somatostatin or the combination of both in metastatic neuroendocrine gut and pancreatic tumours,” Digestion, vol. 57, supplement 1, pp. 84–85, 1996. View at Google Scholar · View at Scopus
  85. B. Eriksson, G. Klöppel, E. Krenning et al., “Consensus guidelines for the management of patients with digestive neuroendocrine tumors—well-differentiated jejunal-ileal tumor/carcinoma,” Neuroendocrinology, vol. 87, no. 1, pp. 8–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. G. Vitale, W. W. De Herder, P. M. Van Koetsveld et al., “IFN-β is a highly potent inhibitor of gastroenteropancreatic neuroendocrine tumor cell growth in vitro,” Cancer Research, vol. 66, no. 1, pp. 554–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Voortman, J. H. Lee, J. K. Killian et al., “Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 29, pp. 13040–13045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. D. S. B. Hoon, R. Ferris, R. Tanaka, K. K. Chong, C. Alix-Panabières, and K. Pantel, “Molecular mechanisms of metastasis,” Journal of Surgical Oncology, vol. 103, no. 6, pp. 508–517, 2011. View at Publisher · View at Google Scholar
  89. B. Terris, J. Y. Scoazec, L. Rubbia et al., “Expression of vascular endothelial growth factor in digestive neuroendocrine tumours,” Histopathology, vol. 32, no. 2, pp. 133–138, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Raymond, S. Faivre, P. Hammel, and P. Ruszniewski, “Sunitinib paves the way for targeted therapies in neuroendocrine tumors,” Targeted Oncology, vol. 4, no. 4, pp. 253–254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Raymond, L. Dahan, J.-L. Raoul et al., “Sunitinib malate for the treatment of pancreatic neuroendocrine tumors,” The New England Journal of Medicine, vol. 364, no. 6, pp. 501–513, 2011. View at Publisher · View at Google Scholar
  92. A. S. Strimpakos, E. M. Karapanagiotou, M. W. Saif, and K. N. Syrigos, “The role of mTOR in the management of solid tumors: an overview,” Cancer Treatment Reviews, vol. 35, no. 2, pp. 148–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. C. Yao, A. T. Phan, D. Z. Chang et al., “Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study,” Journal of Clinical Oncology, vol. 26, no. 26, pp. 4311–4318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. J. C. Yao, C. Lombard-Bohas, E. Baudin et al., “Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial,” Journal of Clinical Oncology, vol. 28, no. 1, pp. 69–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. I. Duran, J. Kortmansky, D. Singh et al., “A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas,” The British Journal of Cancer, vol. 95, no. 9, pp. 1148–1154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. J. C. Yao, M. H. Shah, T. Ito et al., “Everolimus for advanced pancreatic neuroendocrine tumors,” The New England Journal of Medicine, vol. 364, no. 6, pp. 514–523, 2011. View at Publisher · View at Google Scholar
  97. K. Ruebel, A. A. Leontovich, G. A. Stilling et al., “MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression,” Modern Pathology, vol. 23, no. 3, pp. 367–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Garzon, M. Fabbri, A. Cimmino, G. A. Calin, and C. M. Croce, “MicroRNA expression and function in cancer,” Trends in Molecular Medicine, vol. 12, no. 12, pp. 580–587, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. W. Zhang, J. E. Dahlberg, and W. Tam, “MicroRNAs in tumorigenesis,” The American Journal of Pathology, vol. 171, no. 3, pp. 728–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Olson, J. Lu, H. Zhang et al., “MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer,” Genes & Development, vol. 23, no. 18, pp. 2152–2165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Huynh, M. F. Segura, A. Gaziel-Sovran et al., “Efficient in vivo microRNA targeting of liver metastasis,” Oncogene, vol. 30, no. 12, pp. 1481–1488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. M. Rahman, Z. R. Qian, E. L. Wang et al., “Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation,” The British Journal of Cancer, vol. 100, no. 3, pp. 501–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Mayr, M. T. Hemann, and D. P. Bartel, “Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation,” Science, vol. 315, no. 5818, pp. 1576–1579, 2007. View at Publisher · View at Google Scholar · View at Scopus