Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012, Article ID 140147, 11 pages
http://dx.doi.org/10.1155/2012/140147
Review Article

The Nude Mouse as Model for Liver Deficiency Study and Treatment and Xenotransplantation

1Faculté de Médecine et de Pharmacie, EA 3921, IFR 133, 25030 Besançon, France
2Unit of Pediatric Surgery, Geneva University Hospital, 1211 Geneva, Switzerland
3KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France

Received 25 May 2012; Revised 13 August 2012; Accepted 7 September 2012

Academic Editor: Shay Soker

Copyright © 2012 Isabelle Vidal and Lysiane Richert. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. W. Graziadei, “Living donor liver transplantation,” Tropical Gastroenterology, vol. 28, no. 2, pp. 45–50, 2007. View at Google Scholar · View at Scopus
  2. R. F. Saidi, N. Jabbour, Y. Li, S. A. Shah, and A. Bozorgzadeh, “Outcomes in partial liver transplantation: deceased donor split-liver versus live donor liver transplantation,” HPB, vol. 13, no. 11, pp. 797–801, 2011. View at Google Scholar
  3. B. Carpentier and S. R. Ash, “Sorbent-based artificial liver devices: principles of operation, chemical effects and clinical results,” Expert Review of Medical Devices, vol. 4, no. 6, pp. 839–861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Hughes, R. R. Mitry, and A. Dhawan, “Current status of hepatocyte transplantation,” Transplantation, vol. 93, no. 4, pp. 342–347, 2012. View at Google Scholar
  5. Y. Yu, J. E. Fisher, J. B. Lillegard, B. Rodysill, B. Amiot, and S. L. Nyberg, “Cell therapies for liver diseases,” Liver Transplantation, vol. 18, no. 1, pp. 9–21, 2012. View at Google Scholar
  6. S. Gupta and J. Roy Chowdhury, “Therapeutic potential of hepatocyte transplantation,” Seminars in Cell and Developmental Biology, vol. 13, no. 6, pp. 439–446, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Strom, P. Bruzzone, H. Cai et al., “Hepatocyte transplantation: clinical experience and potential for future use,” Cell Transplantation, vol. 15, no. 1, supplement, pp. S105–S110, 2006. View at Google Scholar · View at Scopus
  8. M. Muraca, “Evolving concepts in cell therapy of liver disease and current clinical perspectives,” Digestive and Liver Disease, vol. 43, no. 3, pp. 180–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Sokal, “From hepatocytes to stem and progenitor cells for liver regenerative medicine: advances and clinical perspectives,” Cell Proliferation, vol. 44, no. 1, supplement, pp. 39–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Richert, C. Abadie, A. Bonet et al., “Inter-laboratory evaluation of the response of primary human hepatocyte cultures to model CYP inducers—A European Centre for Validation of Alternative Methods (ECVAM)—Funded pre-validation study,” Toxicology in Vitro, vol. 24, no. 1, pp. 335–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Alexandre, A. Baze, C. Parmentier et al., “Plateable cryopreserved human hepatocytes for the assessment of cytochrome P450 inducibility: experimental condition-related variables affecting their response to inducers,” Xenobiotica, vol. 42, no. 10, pp. 968–979, 2012. View at Google Scholar
  12. H. Kamimura, N. Nakada, K. Suzuki et al., “Assessment of chimeric mice with humanized liver as a tool for predicting circulating human metabolites,” Drug Metabolism and Pharmacokinetics, vol. 25, no. 3, pp. 223–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Strom, J. Davila, and M. Grompe, “Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity,” Methods in Molecular Biology, vol. 640, pp. 491–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Katoh and T. Yokoi, “Application of chimeric mice with humanized liver for predictive ADME,” Drug Metabolism Reviews, vol. 39, no. 1, pp. 145–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Kikuchi, M. McCown, P. Olson et al., “Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome P450 enzymes in chimeric mice with humanized liver,” Drug Metabolism and Disposition, vol. 38, no. 11, pp. 1954–1961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. F. Mercer, “Animal models for studying hepatitis C and alcohol effects on liver,” World Journal of Gastroenterology, vol. 17, no. 20, pp. 2515–2519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. X. L. Zhou, G. J. Sullivan, P. Sun, and I. H. Park, “Humanized murine model for HBV and HCV using human induced pluripotent stem cells,” Archives of Pharmacal Research, vol. 35, no. 2, pp. 261–269, 2012. View at Google Scholar
  18. I. Vidal, N. Blanchard, E. Alexandre et al., “Improved xenogenic hepatocyte implantation into nude mouse liver parenchyma with acute liver failure when followed by repeated anti-fas antibody (Jo2) treatment,” Cell Transplantation, vol. 17, no. 5, pp. 507–524, 2008. View at Google Scholar · View at Scopus
  19. J. A. Rhim, E. P. Sandgren, R. D. Palmiter, and R. L. Brinster, “Complete reconstitution of mouse liver with xenogeneic hepatocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4942–4946, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Mahieu-Caputo, J. E. Allain, J. Branger et al., “Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts,” Human Gene Therapy, vol. 15, no. 12, pp. 1219–1228, 2004. View at Google Scholar · View at Scopus
  21. G. Nowak, B. G. Ericzon, S. Nava, M. Jaksch, M. Westgren, and S. Sumitran-Holgersson, “Identification of expandable human hepatic progenitors which differentiate into mature hepatic cells in vivo,” Gut, vol. 54, no. 7, pp. 972–979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Joshi, B. Patil P, Z. He, J. Holgersson, M. Olausson, and S. Sumitran-Holgersson, “Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes,” Cytotherapy, vol. 14, no. 6, pp. 657–669, 2012. View at Google Scholar
  23. D. H. Woo, S. K. Kim, H. J. Lim, J. Heo, H. S. Park, and G. Y. Kang, “Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice,” Gastroenterology, vol. 142, no. 3, pp. 602–611, 2012. View at Google Scholar
  24. A. Banas, T. Teratani, Y. Yamamoto et al., “Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure,” Journal of Gastroenterology and Hepatology, vol. 24, no. 1, pp. 70–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Jiang, J. G. Li, L. Lan, Y. M. Wang, Q. Mao, and J. P. You, “Human hepatoma HepaRG cell line engraftment in severe combined immunodeficient × beige mice using mouse-specific anti-Fas antibody,” Transplantation Proceedings, vol. 42, no. 9, pp. 3773–3778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. L. Su, C. C. Liu, D. Xiang et al., “Xeno-repopulation of Fah-/-Nod/Scid mice livers by human hepatocytes,” Science China Life Sciences, vol. 54, no. 3, pp. 227–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Azuma, N. Paulk, A. Ranade et al., “Robust expansion of human hepatocytes in Fah−/−/Rag2 −/−/Il2rg−/− mice,” Nature Biotechnology, vol. 25, no. 8, pp. 903–910, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Dandri, M. R. Burda, E. Török et al., “Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus,” Hepatology, vol. 33, no. 4, pp. 981–988, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Haridass, Q. Yuan, P. D. Becker et al., “Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice,” American Journal of Pathology, vol. 175, no. 4, pp. 1483–1492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Hasegawa, K. Kawai, T. Mitsui et al., “The reconstituted “humanized liver” in TK-NOG mice is mature and functional,” Biochemical and Biophysical Research Communications, vol. 405, no. 3, pp. 405–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. N. Douglas, T. Kawahara, B. Sis et al., “Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease,” PLoS ONE, vol. 5, no. 2, Article ID e9209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. A. Croy, K. E. Linder, and J. A. Yager, “Primer for non-immunologists on immune-deficient mice and their applications in research,” Comparative Medicine, vol. 51, no. 4, pp. 300–313, 2001. View at Google Scholar · View at Scopus
  33. Y. Shinkai, G. Rathbun, K. P. Lam et al., “RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement,” Cell, vol. 68, no. 5, pp. 855–867, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Segre, J. L. Nemhauser, B. A. Taylor, J. H. Nadeau, and E. S. Lander, “Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat,” Genomics, vol. 28, no. 3, pp. 549–559, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Chatterjea-Matthes, M. E. García-Ojeda, S. Dejbakhsh-Jones et al., “Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice,” Journal of Immunology, vol. 171, no. 3, pp. 1207–1215, 2003. View at Google Scholar · View at Scopus
  36. J. Fogh and B. Giovanella, The Nude Mouse in Experimental and Clinical Research, Academic Press, 1978.
  37. J. Fogh and B. Giovanella, The Nude Mouse in Experimental and Clinical Research, Academic Press, 1982.
  38. J. Dalmo, N. Rudqvist, J. Spetz, P. Laverman, O. Nilsson, and H. Ahlman, “Biodistribution of 177Lu-octreotate and 111In-minigastrin in female nude mice transplanted with human medullary thyroid carcinoma GOT2,” Oncology Reports, vol. 27, no. 1, pp. 174–181, 2011. View at Google Scholar
  39. J. Fuchs, D. Schmidt, T. Pietsch, K. Miller, and D. Von Schweinitz, “Successful transplantation of human hepatoblastoma into immunodeficient mice,” Journal of Pediatric Surgery, vol. 31, no. 9, pp. 1241–1246, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Schnater, E. Bruder, S. Bertschin et al., “Subcutaneous and intrahepatic growth of human hepatoblastoma in immunodeficient mice,” Journal of Hepatology, vol. 45, no. 3, pp. 377–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. M. Wei, J. H. Lin, R. Xia, and J. C. Lan, “Establishment of a transplantable human myeloid BALB/c nude mouse model,” Journal of Experimental Hematology, vol. 13, no. 4, pp. 596–600, 2005. View at Google Scholar · View at Scopus
  42. C. Yamamoto, H. Takemoto, K. Kuno et al., “Cycloprodigiosin hydrochloride, a new H+/Cl symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice,” Hepatology, vol. 30, no. 4, pp. 894–902, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Niemeyer, R. A. J. Oostendorp, M. Kremer et al., “Non-invasive tracking of human haemopoietic CD34+ stem cells in vivo in immunodeficient mice by using magnetic resonance imaging,” European Radiology, vol. 20, no. 9, pp. 2184–2193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. J. Aerts, B. Martinez-Madrid, J. L. M. R. Leroy, S. Van Aelst, and P. E. J. Bols, “Xenotransplantation by injection of a suspension of isolated preantral ovarian follicles and stroma cells under the kidney capsule of nude mice,” Fertility and Sterility, vol. 94, no. 2, pp. 708–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Guo, T. Fu, J. A. Nelson, R. A. Superina, and H. E. Soriano, “Liver repopulation after cell transplantation in mice treated with retrorsine and carbon tetrachloride,” Transplantation, vol. 73, no. 11, pp. 1818–1824, 2002. View at Google Scholar · View at Scopus
  46. S. Gupta, K. K. Bhargava, and P. M. Novikoff, “Mechanisms of cell engraftment during liver repopulation with hepatocyte transplantation,” Seminars in Liver Disease, vol. 19, no. 1, pp. 15–26, 1999. View at Google Scholar · View at Scopus
  47. R. H. Yuan, A. Ogawa, E. Ogawa, D. Neufeld, L. Zhu, and D. A. Shafritz, “p27Kip1 inactivation provides a proliferative advantage to transplanted hepatocytes in DPPIV/Rag2 double knockout mice after repeated host liver injury,” Cell Transplantation, vol. 12, no. 8, pp. 907–919, 2004. View at Google Scholar · View at Scopus
  48. S. Gupta, P. Rajvanshi, A. N. Irani, C. J. Palestro, and K. K. Bhargava, “Integration and proliferation of transplanted cells in hepatic parenchyma following D-galactosamine-induced acute injury in F344 rats,” The Journal of Pathology, vol. 190, no. 2, pp. 203–210, 2000. View at Google Scholar
  49. E. Laconi, R. Oren, D. K. Mukhopadhyay et al., “Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine,” American Journal of Pathology, vol. 153, no. 1, pp. 319–329, 1998. View at Google Scholar · View at Scopus
  50. S. Laconi, S. Pillai, P. P. Porcu, D. A. Shafritz, P. Pani, and E. Laconi, “Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with retrorsine,” American Journal of Pathology, vol. 158, no. 2, pp. 771–777, 2001. View at Google Scholar · View at Scopus
  51. R. Oren, M. D. Dabeva, P. M. Petkov, E. Hurston, E. Laconi, and D. A. Shafritz, “Restoration of serum albumin levels in nagase analbuminemic rats by hepatocyte transplantation,” Hepatology, vol. 29, no. 1, pp. 75–81, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Fujino, X. K. Li, Y. Kitazawa et al., “Selective repopulation of mice liver after fas-resistant hepatocyte transplantation,” Cell Transplantation, vol. 10, no. 4-5, pp. 353–361, 2001. View at Google Scholar · View at Scopus
  53. V. O. Mallet, J. M. Regimbeau, C. Mitchell, J. E. Guidotti, O. Soubrane, and H. Gilgenkrantz, “Liver repopulation: the selective advantage concept,” Gastroenterologie Clinique et Biologique, vol. 26, no. 5, pp. 480–485, 2002. View at Google Scholar · View at Scopus
  54. A. Mignon, J. E. Guidotti, C. Mitchell et al., “Selective repopulation of normal mouse liver by Fas/CD95-resistant hepatocytes,” Nature Medicine, vol. 4, no. 10, pp. 1185–1188, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Mitchell, V. O. Mallet, J. E. Guidotti, C. Goulenok, A. Kahn, and H. Gilgenkrantz, “Liver repopulation by Bcl-xL transgenic hepatocytes,” American Journal of Pathology, vol. 160, no. 1, pp. 31–35, 2002. View at Google Scholar · View at Scopus
  56. H. T. Lieu, F. Batteux, M. T. Simon et al., “HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice,” Hepatology, vol. 42, no. 3, pp. 618–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. H. T. Lieu, M. T. Simon, T. Nguyen-Khoa et al., “Reg2 inactivation increases sensitivity to Fas hepatotoxicity and delays liver regeneration post-hepatectomy in mice,” Hepatology, vol. 44, no. 6, pp. 1452–1464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Malhi, A. N. Irani, I. Volenberg, M. L. Schilsky, and S. Gupta, “Early cell transplantation in LEC rats modeling Wilson's disease eliminates hepatic copper with reversal of liver disease,” Gastroenterology, vol. 122, no. 2, pp. 438–447, 2002. View at Google Scholar · View at Scopus
  59. E. P. Sandgren, R. D. Palmiter, J. L. Heckel, C. C. Daughterly, R. L. Brinster, and J. L. Degen, “Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene,” Cell, vol. 66, no. 2, pp. 245–256, 1991. View at Google Scholar · View at Scopus
  60. J. A. Rhim, E. P. Sandgren, J. L. Degen, R. D. Palmiter, and R. L. Brinster, “Replacement of diseased mouse liver by hepatic cell transplantation,” Science, vol. 263, no. 5150, pp. 1149–1152, 1994. View at Google Scholar · View at Scopus
  61. K. Overturf, M. Al-Dhalimy, R. Tanguay et al., “Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I,” Nature Genetics, vol. 12, no. 3, pp. 266–273, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Gandillet, I. Vidal, E. Alexandre et al., “Experimental models of acute and chronic liver failure in nude mice to study hepatocyte transplantation,” Cell Transplantation, vol. 14, no. 5, pp. 277–290, 2005. View at Google Scholar · View at Scopus
  63. G. M. Higgins and R. M. Anderson, “Experimental pathology of the liver—I. Restoration of the liver of the white rat following partial surgical removal,” Archives of Pathology, vol. 12, pp. 186–202, 1931. View at Google Scholar
  64. S. C. Strom, R. L. Jirtle, and R. S. Jones, “Isolation, culture, and transplantation of human hepatocytes,” Journal of the National Cancer Institute, vol. 68, no. 5, pp. 771–778, 1982. View at Google Scholar · View at Scopus
  65. F. G. Court, S. A. Wemyss-Holden, A. R. Dennison, and G. J. Maddern, “The mystery of liver regeneration,” British Journal of Surgery, vol. 89, no. 9, pp. 1089–1095, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Ogasawara, R. Watanabe-Fukunaga, M. Adachi et al., “Lethal effect of the anti-Fas antibody in mice,” Nature, vol. 364, no. 6440, pp. 806–809, 1993. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Suda, T. Okazaki, Y. Naito et al., “Expression of the Fas ligand in cells of T cell lineage,” Journal of Immunology, vol. 154, no. 8, pp. 3806–3813, 1995. View at Google Scholar · View at Scopus
  68. J. E. Guidotti, V. O. Mallet, C. Mitchell et al., “Selection of in vivo retrovirally transduced hepatocytes leads to efficient and predictable mouse liver repopulation,” The FASEB Journal, vol. 15, no. 10, pp. 1849–1851, 2001. View at Google Scholar · View at Scopus
  69. C. Kakinuma, K. Takagaki, T. Yatomi et al., “Acute toxicity of an anti-Fas antibody in mice,” Toxicologic Pathology, vol. 27, no. 4, pp. 412–420, 1999. View at Google Scholar · View at Scopus
  70. V. Lacronique, A. Mignon, M. Fabre et al., “Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice,” Nature Medicine, vol. 2, no. 1, pp. 80–86, 1996. View at Publisher · View at Google Scholar · View at Scopus
  71. K. M. Braun and E. P. Sandgren, “Liver disease and compensatory growth: unexpected lessons from genetically altered mice,” International Journal of Developmental Biology, vol. 42, no. 7, pp. 935–942, 1998. View at Google Scholar · View at Scopus
  72. K. Yoshizato and C. Tateno, “A human hepatocyte-bearing mouse: an animal model to predict drug metabolism and effectiveness in humans,” PPAR Research, vol. 2009, Article ID 476217, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Grompe, “Therapeutic liver repopulation for the treatment of metabolic liver diseases,” Human Cell, vol. 12, no. 4, pp. 171–180, 1999. View at Google Scholar · View at Scopus
  74. T. C. Weglarz and E. P. Sandgren, “Timing of hepatocyte entry into DNA synthesis after partial hepatectomy is cell autonomous,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 23, pp. 12595–12600, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. A. De la Coste, M. Fabre, N. McDonell et al., “Differential protective effects of Bcl-X(L) and Bcl-2 on apoptotic liver injury in transgenic mice,” American Journal of Physiology, vol. 277, no. 3, pp. G702–G708, 1999. View at Google Scholar · View at Scopus
  76. C. Mitchell, A. Mignon, J. E. Guidotti et al., “Therapeutic liver repopulation in a mouse model of hypercholesterolemia,” Human Molecular Genetics, vol. 9, no. 11, pp. 1597–1602, 2000. View at Google Scholar · View at Scopus
  77. I. Vidal, N. Blanchard, M. P. Chenard-Neu, P. Bachellier, B. Heyd, and F. Staedtler, “Increased survival despite failure of transplanted human hepatocyte implantation into liver parenchyma of Nude mice with repeated lethal Jo2 induced-liver deficiency,” Cell Transplantation. In press.
  78. T. Kawahara, C. Toso, D. N. Douglas et al., “Factors affecting hepatocyte isolation, engraftment, and replication in an in vivo model,” Liver Transplantation, vol. 16, no. 8, pp. 974–982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Katoh, C. Tateno, K. Yoshizato, and T. Yokoi, “Chimeric mice with humanized liver,” Toxicology, vol. 246, no. 1, pp. 9–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Robinet and T. F. Baumert, “Host and viral determinants for engraftment of virus permissive human hepatocytes into chimeric immunodeficient mice,” Journal of Hepatology, vol. 53, no. 3, pp. 421–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Meuleman, L. Libbrecht, R. De Vos et al., “Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera,” Hepatology, vol. 41, no. 4, pp. 847–856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. K. D. Bissig, S. F. Wieland, P. Tran et al., “Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment,” Journal of Clinical Investigation, vol. 120, no. 3, pp. 924–930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Zhang, S. Z. Huang, S. Wang, and Y. T. Zeng, “Development of an HSV-tk transgenic mouse model for study of liver damage,” FEBS Journal, vol. 272, no. 9, pp. 2207–2215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Kawahara, D. N. Douglas, J. Lewis et al., “Critical role of natural killer cells in the rejection of human hepatocytes after xenotransplantation into immunodeficient mice,” Transplant International, vol. 23, no. 9, pp. 934–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Tateno, Y. Yoshizane, N. Saito et al., “Near completely humanized liver in mice shows human-type metabolic responses to drugs,” American Journal of Pathology, vol. 165, no. 3, pp. 901–912, 2004. View at Google Scholar · View at Scopus
  86. R. A. Peterson, D. L. Krull, H. Roger Brown, and M. de Serres, “Morphologic characterization of phoenixBio (uPA+/+/SCID) humanized liver chimeric mouse model,” Drug Metabolism Letters, vol. 4, no. 3, pp. 180–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Dong, H. Wei, R. Sun, and Z. Tian, “The roles of innate immune cells in liver injury and regeneration,” Cellular & Molecular Immunology, vol. 4, no. 4, pp. 241–252, 2007. View at Google Scholar · View at Scopus
  88. M. Fujiyoshi and M. Ozaki, “Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases,” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 18, no. 1, pp. 13–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. V. Tumanov, E. P. Koroleva, P. A. Christiansen et al., “T cell-derived lymphotoxin regulates liver regeneration,” Gastroenterology, vol. 136, no. 2, pp. 694–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Strick-Marchand, G. X. Masse, M. C. Weiss, and J. P. Di Santo, “Lymphocytes support oval cell-dependent liver regeneration,” Journal of Immunology, vol. 181, no. 4, pp. 2764–2771, 2008. View at Google Scholar · View at Scopus
  91. A. C. A. Tannuri, U. Tannuri, M. C. M. Coelho, E. S. Mello, and N. A. S. R. Santos, “Effects of immunosuppressants on hepatocyte cell mitosis during liver regeneration in growing animal models of partial hepatectomy,” Transplantation Proceedings, vol. 40, no. 5, pp. 1641–1644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. U. Tannuri, A. C. A. Tannuri, M. C. M. Coelho, E. S. Mello, and N. A. S. R. Dos Santos, “Effect of the immunosuppressants on hepatocyte cells proliferation and apoptosis during liver regeneration after hepatectomy-Molecular studies,” Pediatric Transplantation, vol. 12, no. 1, pp. 73–79, 2008. View at Publisher · View at Google Scholar · View at Scopus