Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012, Article ID 179365, 6 pages
Research Article

2D MR Spectroscopy Combined with Prior-Knowledge Fitting Is Sensitive to HCV-Associated Cerebral Metabolic Abnormalities

1Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1721, USA
2Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
3Greater Los Angeles VA Healthcare System, University of California, Los Angeles, CA 90073, USA

Received 25 February 2012; Revised 5 May 2012; Accepted 19 May 2012

Academic Editor: Mario Reis Alvares-da-Silva

Copyright © 2012 Rajakumar Nagarajan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


There is an evidence of neurocognitive dysfunction even in the absence of advanced liver disease in chronic hepatitis C virus (HCV) infection. Brain metabolism has been investigated non-invasively using one-dimensional (1D) in vivo Magnetic Resonance Spectroscopy (MRS) over three decades. Even though highly concentrated cerebral metabolites (N-acetylaspartate, creatine, choline, glutamate/glutamine, myo-inositol) have been detected using MRS, other metabolites at low concentrations (~1–3 mM or less) including glutathione, aspartate and GABA are quite difficult to observe using 1D MRS. In order to resolve overlapping resonances from a number of metabolites, a remedy is to add a second spectral dimension to the existing 1D MRS. Localized two-dimensional correlated spectroscopy (L-COSY) has been developed over the last decade to enhance the spectral dispersion by using the second spectral dimension. We have evaluated this L-COSY technique in the frontal white/gray matter regions of 14 HCV+ (mean age of 56.2 years) and 14 HCV− (mean age of 46.6 years) subjects. Our preliminary results showed significantly increased myo-inositol and glutathione in the HCV+ compared to the HCV− subjects. Hence, glutathione and myo-inositol should be considered along with other metabolites as important markers of inflammation.