Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012, Article ID 307165, 7 pages
http://dx.doi.org/10.1155/2012/307165
Review Article

Autologous Bone Marrow Stem Cells in the Treatment of Chronic Liver Disease

1Department of HPB Surgery, Hammersmith Hospital, Imperial College, Hammersmith Campus, London, UK
2Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK

Received 29 July 2011; Accepted 16 September 2011

Academic Editor: Angela Dolganiuc

Copyright © 2012 Madhava Pai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. British Liver Trust, “Facts about liver disease,” 2007, http://www.britishlivertrust.org.uk/home/about-us/media-centre/facts-about-liver-disease.aspx. View at Google Scholar
  2. “UK National Statistics,” 2009, http://www.statistics.gov.uk/hub/index.html.
  3. K. Walsh and G. Alexander, “Alcoholic liver disease,” Postgraduate Medical Journal, vol. 76, no. 895, pp. 280–286, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Williams, “The pervading influence of alcoholic liver disease in hepatology,” Alcohol and Alcoholism, vol. 43, no. 4, pp. 393–397, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. H. Bell, J. Jahnsen, E. Kittang, N. Raknerud, and L. Sandvik, “Long-term prognosis of patients with alcoholic liver cirrhosis: a 15-year follow-up study of 100 Norwegian patients admitted to one unit,” Scandinavian Journal of Gastroenterology, vol. 39, no. 9, pp. 858–863, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. United Network of Organ Sharing Online (UNOS), “Data,” 2006, http://www.unos.org/donation/index.php?topic=data. View at Google Scholar
  7. I. J. Fox, J. R. Chowdhury, S. S. Kaufman et al., “Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation,” The New England Journal of Medicine, vol. 338, no. 20, pp. 1422–1426, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. L. Preston, M. R. Alison, S. J. Forbes, N. C. Direkze, R. Poulsom, and N. A. Wright, “The new stem cell biology: something for everyone,” Journal of Clinical Pathology—Molecular Pathology, vol. 56, no. 2, pp. 86–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Bianco, M. Riminucci, S. Gronthos, and P. G. Robey, “Bone marrow stromal stem cells: nature, biology, and potential applications,” Stem Cells, vol. 19, no. 3, pp. 180–192, 2001. View at Google Scholar · View at Scopus
  11. E. L. Herzog, L. Chai, and D. S. Krause, “Plasticity of marrow-derived stem cells,” Blood, vol. 102, no. 10, pp. 3483–3493, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. D. Orlic, J. Kajstura, S. Chimenti et al., “Mobilized bone marrow cells repair the infarcted heart, improving function and survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10344–10349, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. E. Gussoni, Y. Soneoka, C. D. Strickland et al., “Dystrophin expression in the mdx mouse restored by stem cell transplantation,” Nature, vol. 401, no. 6751, pp. 390–394, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Mezey, K. J. Chandross, G. Harta, R. A. Maki, and S. R. McKercher, “Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow,” Science, vol. 290, no. 5497, pp. 1779–1782, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Petersen, W. C. Bowen, K. D. Patrene et al., “Bone marrow as a potential source of hepatic oval cells,” Science, vol. 284, no. 5417, pp. 1168–1170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Alison, R. Poulsom, R. Jeffery et al., “Hepatocytes from non-hepatic adult stem cells,” Nature, vol. 406, no. 6793, p. 257, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. D. S. Krause, N. D. Theise, M. I. Collector et al., “Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell,” Cell, vol. 105, no. 3, pp. 369–377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Terai, I. Sakaida, N. Yamamoto et al., “An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes,” Journal of Biochemistry, vol. 134, no. 4, pp. 551–558, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Y. Jang, M. I. Collector, S. B. Baylin, A. M. Diehl, and S. J. Sharkis, “Hematopoietic stem cells convert into liver cells within days without fusion,” Nature Cell Biology, vol. 6, no. 6, pp. 532–539, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Vassilopoulos, P. R. Wang, and D. W. Russell, “Transplanted bone marrow regenerates liver by cell fusion,” Nature, vol. 422, no. 6934, pp. 901–904, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. X. Wang, H. Willenbring, Y. Akkari et al., “Cell fusion is the principal source of bone-marrow-derived hepatocytes,” Nature, vol. 422, no. 6934, pp. 897–901, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. H. Takano, M. Ohtsuka, H. Akazawa et al., “Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction,” Current Pharmaceutical Design, vol. 9, no. 14, pp. 1121–1127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Tang, Q. Xie, G. Pan, J. Wang, and M. Wang, “Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion,” European Journal of Cardio-thoracic Surgery, vol. 30, no. 2, pp. 353–361, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Z. Chen, C. C. Chua, Y. S. Ho, R. C. Hamdy, and B. H. L. Chua, “Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 280, no. 5, pp. H2313–H2320, 2001. View at Google Scholar · View at Scopus
  25. M. Wang, B. M. Tsai, P. R. Crisostomo, and D. R. Meldrum, “Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia,” Shock, vol. 25, no. 5, pp. 454–459, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. T. W. Austin and E. Lagasse, “Hepatic regeneration from hematopoietic stem cells,” Mechanisms of Development, vol. 120, no. 1, pp. 131–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Lagasse, H. Connors, M. Al-Dhalimy et al., “Purified hematopoietic stem cells can differentiate into hepatocytes in vivo,” Nature Medicine, vol. 6, no. 11, pp. 1229–1234, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. J. Saez-Lara, C. Frecha, F. Martin et al., “ransplantation of human CD34+ stem cells from umbilical cord blood to rats with thioacetamide-induced liver cirrhosis,” Xenotransplantation, vol. 13, no. 6, pp. 529–535, 2006. View at Google Scholar
  29. S. Oyagi, M. Hirose, M. Kojima et al., “Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats,” Journal of Hepatology, vol. 44, no. 4, pp. 742–748, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Google Scholar
  31. N. D. Theise, S. Badve, R. Saxena et al., “Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation,” Hepatology, vol. 31, no. 1, pp. 235–240, 2000. View at Google Scholar · View at Scopus
  32. M. Korbling, R. L. Katz, A. Khanna et al., “Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells,” The New England Journal of Medicine, vol. 346, no. 10, pp. 738–746, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. I. O. Ng, K. L. Chan, W. H. Shek et al., “High frequency of chimerism in transplanted livers,” Hepatology, vol. 38, no. 4, pp. 989–998, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. Y. Gordon, N. Levicar, M. Pai et al., “Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor,” Stem Cells, vol. 24, no. 7, pp. 1822–1830, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. N. Levicar, M. Pai, N. A. Habib et al., “Long-term clinical results of autologous infusion of mobilized adult bone marrow derived CD34+ cells in patients with chronic liver disease,” Cell Proliferation, vol. 41, supplement 1, pp. 115–125, 2008. View at Google Scholar
  36. J. S. Am Esch II, W. T. Knoefel, M. Klein et al., “Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration,” Stem Cells, vol. 23, no. 4, pp. 463–470, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. G. Furst, J. S. Am Esch, L. W. Poll et al., “Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experienceSafety and efficacy of autologous bone marrow stem cell transplantation through hepatic artery for the treatment of chronic liver failure: a preliminary studyImprovement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial,” Radiology, vol. 243, no. 1, pp. 171–179, 2007. View at Google Scholar
  38. S. Terai, T. Ishikawa, K. Omori et al., “Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy,” Stem Cells, vol. 24, no. 10, pp. 2292–2298, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. E. Yannaki, A. Anagnostopoulos, D. Kapetanos et al., “Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells,” Experimental Hematology, vol. 34, no. 11, pp. 1583–1587, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. L. Yan, Y. Han, J. Wang, J. Liu, L. Hong, and D. Fan, “Peripheral blood monocytes from patients with HBV related decompensated liver cirrhosis can differentiate into functional hepatocytes,” The American Journal of Hematology, vol. 82, no. 11, pp. 949–954, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. C. Lyra, M. B. Soares, L. F. da Silva et al., “Feasiblity and safety of autologous bone marrow mononuclear cell transplantation in patients with advanced chronic liver disease,” World Journal of Gastroenterology, vol. 13, no. 7, pp. 1067–1073, 2007. View at Google Scholar · View at Scopus
  42. A. C. Lyra, M. B. Soares, L. F. M. Da Silva et al., “Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study,” European Journal of Gastroenterology and Hepatology, vol. 22, no. 1, pp. 33–42, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. A. Gasbarrini, G. L. Rapaccini, S. Rutella et al., “Rescue therapy by portal infusion of autologous stem cells in a case of drug-induced hepatitis,” Digestive and Liver Disease, vol. 39, no. 9, pp. 878–882, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. A. A. Khan, N. Parveen, V. S. Mahaboob et al., “Safety and efficacy of autologous bone marrow stem cell transplantation through hepatic artery for the treatment of chronic liver failure: a preliminary study,” Transplantation Proceedings, vol. 40, no. 4, pp. 1140–1144, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. Mohamadnejad, M. Namiri, M. Bagheri et al., “Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis,” World Journal of Gastroenterology, vol. 13, no. 24, pp. 3359–3363, 2007. View at Google Scholar · View at Scopus
  46. M. Mohamadnejad, K. Alimoghaddam, M. Mohyeddin-Bonab et al., “Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis,” Archives of Iranian Medicine, vol. 10, no. 4, pp. 459–466, 2007. View at Google Scholar · View at Scopus
  47. P. Kharaziha, P. M. Hellstrom, B. Noorinayer et al., “Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial,” European Journal of Gastroenterology & Hepatology, vol. 21, no. 10, pp. 1199–1205, 2009. View at Google Scholar
  48. J. K. Kim, Y. N. Park, J. S. Kim et al., “Autologous bone marrow infusion activates the progenitor cell compartment in patients with advanced liver cirrhosis,” Cell Transplantation, vol. 19, no. 10, pp. 1237–1246, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. Pai, D. Zacharoulis, M. N. Milicevic et al., “Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis,” The American Journal of Gastroenterology, vol. 103, no. 8, pp. 1952–1958, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. Muraca, G. Gerunda, D. Neri et al., “Hepatocyte transplantation as a treatment for glycogen storage disease type 1a,” The Lancet, vol. 359, no. 9303, pp. 317–318, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. C. Selden and H. J. F. Hodgson, “Growth factors and the liver,” Gut, vol. 32, no. 6, pp. 601–603, 1991. View at Google Scholar · View at Scopus
  52. F. P. Russo, M. R. Alison, B. W. Bigger et al., “The bone marrow functionally contributes to liver fibrosis,” Gastroenterology, vol. 130, no. 6, pp. 1807–1821, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. D. Cassiman, A. Barlow, S. Vander Borght, L. Libbrecht, and V. Pachnis, “Hepatic stellate cells do not derive from the neural crest,” Journal of Hepatology, vol. 44, no. 6, pp. 1098–1104, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. X. Z. Wu and D. Chen, “Origin of hepatocellular carcinoma: role of stem cells,” Journal of Gastroenterology and Hepatology, vol. 21, no. 7, pp. 1093–1098, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. L. Dumble, E. J. Croager, G. C. T. Yeoh, and E. A. Quail, “Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma,” Carcinogenesis, vol. 23, no. 3, pp. 435–445, 2002. View at Google Scholar · View at Scopus