Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012, Article ID 582790, 19 pages
http://dx.doi.org/10.1155/2012/582790
Review Article

CYP2E1 Sensitizes the Liver to LPS- and TNF α-Induced Toxicity via Elevated Oxidative and Nitrosative Stress and Activation of ASK-1 and JNK Mitogen-Activated Kinases

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, P.O. Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA

Received 17 May 2011; Revised 10 August 2011; Accepted 10 August 2011

Academic Editor: Kusum Kharbanda

Copyright © 2012 Arthur I. Cederbaum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Albano, “Alcohol, oxidative stress and free radical damage,” Proceedings of the Nutrition Society, vol. 65, no. 3, pp. 278–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Bondy, “Ethanol toxicity and oxidative stress,” Toxicology Letters, vol. 63, no. 3, pp. 231–241, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. A. I. Cederbaum, “Introduction—serial review: alcohol, oxidative stress and cell injury,” Free Radical Biology and Medicine, vol. 31, no. 12, pp. 1524–1526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Nordmann, C. Ribiere, and H. Rouach, “Implication of free radical mechanisms in ethanol-induced cellular injury,” Free Radical Biology and Medicine, vol. 12, no. 3, pp. 219–240, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Knight, “Free radicals: their history and current status in aging and disease,” Annals of Clinical and Laboratory Science, vol. 28, no. 6, pp. 331–346, 1998. View at Google Scholar · View at Scopus
  6. J. P. Kehrer, “Free radicals as mediators of tissue injury and disease,” Critical Reviews in Toxicology, vol. 23, no. 1, pp. 21–48, 1993. View at Google Scholar · View at Scopus
  7. B. Chance, H. Sies, and A. Boveris, “Hydroperoxide metabolism in mammalian organs,” Physiological Reviews, vol. 59, no. 3, pp. 527–604, 1979. View at Google Scholar · View at Scopus
  8. R. E. White, “The involvement of free radicals in the mechanisms of monooxygenases,” Pharmacology and Therapeutics, vol. 49, no. 1-2, pp. 21–42, 1991. View at Google Scholar · View at Scopus
  9. J. Blanck, O. Ristau, A. A. Zhukov, A. L. Archakov, H. Rein, and K. Ruckpaul, “Cytochrome P-450 spin state and leakiness of the monooxygenase pathway,” Xenobiotica, vol. 21, no. 1, pp. 121–135, 1991. View at Google Scholar · View at Scopus
  10. H. De Groot, “Reactive oxygen species in tissue injury,” Hepato-Gastroenterology, vol. 41, no. 4, pp. 328–332, 1994. View at Google Scholar · View at Scopus
  11. B. Halliwell, “Antioxidant defence mechanisms: From the beginning to the end (of the beginning),” Free Radical Research, vol. 31, no. 4, pp. 261–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. B. P. Yu, “Cellular defenses against damage from reactive oxygen species,” Physiological Reviews, vol. 74, no. 1, pp. 139–162, 1994. View at Google Scholar · View at Scopus
  13. G. M. Rosen, S. Pou, C. L. Ramos, M. S. Cohen, and B. E. Britigan, “Free radicals and phagocytic cells,” FASEB Journal, vol. 9, no. 2, pp. 200–209, 1995. View at Google Scholar · View at Scopus
  14. H. M. Lander, “An essential role for free radicals and derived species in signal transduction,” FASEB Journal, vol. 11, no. 2, pp. 118–124, 1997. View at Google Scholar · View at Scopus
  15. Y. Adachi, B. U. Bradford, W. Gao, H. K. Bojes, and R. G. Thurman, “Inactivation of Kupffer cells prevents early alcohol-induced liver injury,” Hepatology, vol. 20, no. 2, pp. 453–460, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Iimuro, R. M. Gallucci, M. Luster, H. Kono, and R. G. Thurman, “Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat,” Hepatology, vol. 26, no. 6, pp. 1530–1537, 1997. View at Google Scholar · View at Scopus
  17. A. A. Nanji, U. Khettry, and S. M. H. Sadrzadeh, “Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver disease,” Proceedings of the Society for Experimental Biology and Medicine, vol. 205, no. 3, pp. 243–247, 1994. View at Google Scholar · View at Scopus
  18. X. M. Yin and W. X. Ding, “Death receptor activation-induced hepatocyte apoptosis and liver injury,” Current Molecular Medicine, vol. 3, no. 6, pp. 491–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Rao, A. Seth, and P. Sheth, “Recent advances in alcoholic liver disease. I. Role of intestinal permeability and endotoxemia in alcoholic liver disease,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 286, no. 6, pp. G881–G884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. G. L. Su, “Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 283, no. 2, pp. G256–G265, 2002. View at Google Scholar · View at Scopus
  21. S. Suzuki, S. Nakamura, A. Serizawa et al., “Role of Kupffer cells and the spleen in modulation of endotoxin-induced liver injury after partial hepatectomy,” Hepatology, vol. 24, no. 1, pp. 219–225, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Wang, H. P. Redmond, R. W. G. Watson, and D. Bouchier-Hayes, “Role of lipopolysaccharide and tumor necrosis factor-alpha in induction of hepatocyte necrosis,” American Journal of Physiology, vol. 269, no. 2, pp. G297–G304, 1995. View at Google Scholar · View at Scopus
  23. J. A. Hewett, P. A. Jean, S. L. Kunkel, and R. A. Roth, “Relationship between tumor necrosis factor-alpha and neutrophils in endotoxin-induced liver injury,” American Journal of Physiology, vol. 265, no. 6, pp. G1011–G1015, 1993. View at Google Scholar · View at Scopus
  24. I. V. Deaciuc, M. Nikolova-Karakashian, F. Fortunato, E. Y. Lee, D. B. Hill, and C. J. McClain, “Apoptosis and dysregulated ceramide metabolism in a murine model of alcohol-enhanced lipopolysaccharide hepatotoxicity,” Alcoholism, vol. 24, no. 10, pp. 1557–1565, 2000. View at Google Scholar · View at Scopus
  25. J. Hansen, D. L. Cherwitz, and J. I. Allen, “The role of tumor necrosis factor-alpha in acute endotoxin-induced hepatotoxicity in ethanol-fed rats,” Hepatology, vol. 20, no. 2, pp. 461–474, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. B. S. Bhagwandeen, M. Apte, L. Manwarring, and J. Dickeson, “Endotoxin induced hepatic necrosis in rats on an alcohol diet,” Journal of Pathology, vol. 152, no. 1, pp. 47–53, 1987. View at Google Scholar · View at Scopus
  27. A. Koteish, S. Yang, H. Lin, X. Huang, and A. M. Diehl, “Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 13037–13044, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Mathurin, Q. G. Deng, A. Keshavarzian, S. Choudhary, E. W. Holmes, and H. Tsukamoto, “Exacerbation of alcoholic liver injury by enteral endotoxin in rats,” Hepatology, vol. 32, no. 5, pp. 1008–1017, 2000. View at Google Scholar · View at Scopus
  29. R. G. Thurman, “Mechanisms of hepatic toxicity. II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin,” American Journal of Physiology, vol. 275, no. 4, pp. G605–G611, 1998. View at Google Scholar · View at Scopus
  30. N. Enomoto, K. Ikejima, S. Yamashina et al., “Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin,” Alcoholism, vol. 25, supplement 6, pp. 51S–54S, 2001. View at Google Scholar · View at Scopus
  31. H. Kono, I. Rusyn, T. Uesugi et al., “Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 280, no. 5, pp. G1005–G1012, 2001. View at Google Scholar · View at Scopus
  32. H. Kono, I. Rusyn, M. Yin et al., “NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease,” Journal of Clinical Investigation, vol. 106, no. 7, pp. 867–872, 2000. View at Google Scholar · View at Scopus
  33. M. Yin, M. D. Wheeler, H. Kono et al., “Essential role of tumor necrosis factorα in alcohol-induced liver injury in mice,” Gastroenterology, vol. 117, no. 4, pp. 942–952, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Uesugi, M. Froh, G. E. Arteel et al., “Delivery of IkappaB superrepressor gene with adenovirus reduces early alcohol-induced liver injury in rats,” Hepatology, vol. 34, no. 6, pp. 1149–1157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. H. M. Bolt, P. H. Roos, and R. Thier, “The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals,” International Archives of Occupational and Environmental Health, vol. 76, no. 3, pp. 174–185, 2003. View at Google Scholar · View at Scopus
  36. C. S. Lieber, “Cytochrome P-4502E1: its physiological and pathological role,” Physiological Reviews, vol. 77, no. 2, pp. 517–544, 1997. View at Google Scholar · View at Scopus
  37. D. R. Koop, “Oxidative and reductive metabolism by cytochrome P450 2E1,” FASEB Journal, vol. 6, no. 2, pp. 724–730, 1992. View at Google Scholar · View at Scopus
  38. J. L. Raucy, J. C. Kraner, and J. M. Lasker, “Bioactivation of halogenated hydrocarbons by cytochrome P4502E1,” Critical Reviews in Toxicology, vol. 23, no. 1, pp. 1–20, 1993. View at Google Scholar · View at Scopus
  39. B. J. Song, A. I. Cederbaum, D. R. Koop, M. Ingelman-Sundberg, and A. Nanji, “Ethanol-inducible cytochrome P450 (CYP2E1): biochemistry, molecular biology and clinical relevance,” Alcoholism, vol. 20, supplement 8, pp. 138A–146A, 1996. View at Google Scholar
  40. E. Tanaka, M. Terada, and S. Misawa, “Cytochrome P450 2E1: its clinical and toxicological role,” Journal of Clinical Pharmacy and Therapeutics, vol. 25, no. 3, pp. 165–175, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. C. S. Yang, J. S. H. Yoo, H. Ishizaki, and J. Hong, “Cytochrome P450IIE1. Roles in nitrosamine metabolism and mechanisms of regulation,” Drug Metabolism Reviews, vol. 22, no. 2-3, pp. 147–159, 1990. View at Google Scholar · View at Scopus
  42. S. S. T. Lee, J. T. M. Buters, T. Pineau, P. Fernandez-Salguero, and F. J. Gonzalez, “Role of CYP2E1 in the hepatotoxicity of acetaminophen,” Journal of Biological Chemistry, vol. 271, no. 20, pp. 12063–12067, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Ekstrom and M. Ingelman-Sundberg, “Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1),” Biochemical Pharmacology, vol. 38, no. 8, pp. 1313–1319, 1989. View at Google Scholar · View at Scopus
  44. L. D. Gorsky, D. R. Koop, and M. J. Coon, “On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450,” Journal of Biological Chemistry, vol. 259, no. 11, pp. 6812–6817, 1984. View at Google Scholar · View at Scopus
  45. E. Dicker and A. I. Cederbaum, “Hydroxyl radical generation by microsomes after chronic ethanol consumption,” Alcoholism, vol. 11, no. 3, pp. 309–314, 1987. View at Google Scholar · View at Scopus
  46. S. M. Klein, G. Cohen, C. S. Lieber, and A. I. Cederbaum, “Increased microsomal oxidation of hydroxyl radical scavenging agents and ethanol after chronic consumption of ethanol,” Archives of Biochemistry and Biophysics, vol. 223, no. 2, pp. 425–432, 1983. View at Google Scholar · View at Scopus
  47. S. Puntarulo and A. I. Cederbaum, “Increased NADPH-dependent chemiluminescence by microsomes after chronic ethanol consumption,” Archives of Biochemistry and Biophysics, vol. 266, no. 2, pp. 435–445, 1988. View at Google Scholar · View at Scopus
  48. J. Rashba-Step, N. J. Turro, and A. I. Cederbaum, “Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment,” Archives of Biochemistry and Biophysics, vol. 300, no. 1, pp. 401–408, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. A. A. Caro and A. I. Cederbaum, “Oxidative stress, toxicology, and pharmacology of CYP2E1,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 27–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Castillo, D. R. Koop, S. Kamimura, G. Triadafilopoulos, and H. Tsukamoto, “Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride— and iron-dependent microsomal lipid peroxidation,” Hepatology, vol. 16, no. 4, pp. 992–996, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Morimoto, M. A. Zern, A. L. Hagbjork, M. Ingelman-Sundberg, and S. W. French, “Fish oil, alcohol, and liver pathology: role of cytochrome P450 2E1,” Proceedings of the Society for Experimental Biology and Medicine, vol. 207, no. 2, pp. 197–205, 1994. View at Google Scholar · View at Scopus
  52. A. A. Nanji, S. Zhao, S. M. H. Sadrzadeh, A. J. Dannenberg, S. R. Tahan, and D. J. Waxman, “Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil-ethanol-fed rats,” Alcoholism, vol. 18, no. 5, pp. 1280–1285, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. S. W. French, K. Wong, L. Jui, E. Albano, A. L. Hagbjork, and M. Ingelman-Sundberg, “Effect of ethanol on cytochrome P450 2E1 (CYP2E1), lipid peroxidation, and serum protein adduct formation in relation to liver pathology pathogenesis,” Experimental and Molecular Pathology, vol. 58, no. 1, pp. 61–75, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Lu, J. Zhuge, X. Wang, J. Bai, and A. I. Cederbaum, “Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice,” Hepatology, vol. 47, no. 5, pp. 1483–1494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Albano, P. Clot, M. Morimoto, A. Tomasi, M. Ingelman-Sundberg, and S. W. French, “Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol,” Hepatology, vol. 23, no. 1, pp. 155–163, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Morimoto, A. L. Hagbjork, A. A. Nanji et al., “Role of cytochrome P4502E1 in alcoholic liver disease pathogenesis,” Alcohol, vol. 10, no. 6, pp. 459–464, 1993. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Morimoto, A. L. Hagbjork, Y. J. Y. Wan et al., “Modulation of experimental alcohol-induced liver disease by cytochrome P450 2E1 inhibitors,” Hepatology, vol. 21, no. 6, pp. 1610–1617, 1995. View at Google Scholar · View at Scopus
  58. Z. Q. Gouillon, D. Lucas, J. Li et al., “Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole,” Experimental Biology and Medicine, vol. 224, no. 4, pp. 302–308, 2000. View at Google Scholar · View at Scopus
  59. K. Morgan, S. W. French, and T. R. Morgan, “Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage,” Hepatology, vol. 36, no. 1, pp. 122–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. X. Bai and A. I. Cederbaum, “Adenovirus mediated overexpression of CYP2E1 increases sensitivity of HepG2 cells to acetaminophen induced cytotoxicity,” Molecular and Cellular Biochemistry, vol. 262, no. 1-2, pp. 165–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. J. X. Bai and A. I. Cederbaum, “Adenovirus-mediated expression of CYP2E1 produces liver toxicity in mice,” Toxicological Sciences, vol. 91, no. 2, pp. 365–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Kono, B. U. Bradford, M. Yin et al., “Cyp2e1 is not involved in early alcohol-induced liver injury,” American Journal of Physiology, vol. 277, no. 6, pp. G1259–G1267, 1999. View at Google Scholar · View at Scopus
  63. D. R. Koop, B. Klopfenstein, Y. Iimuro, and R. G. Thurman, “Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1,” Molecular Pharmacology, vol. 51, no. 6, pp. 944–950, 1997. View at Google Scholar · View at Scopus
  64. B. U. Bradford, H. Kono, F. Isayama et al., “Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver,” Hepatology, vol. 41, no. 2, pp. 336–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Kamimura and H. Tsukamoto, “Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease,” Hepatology, vol. 22, no. 4, pp. 1304–1309, 1995. View at Google Scholar · View at Scopus
  66. R. Honchel, M. B. Ray, L. Marsano et al., “Tumor necrosis factor in alcohol enhanced endotoxin liver injury,” Alcoholism, vol. 16, no. 4, pp. 665–669, 1992. View at Google Scholar · View at Scopus
  67. V. Purohit and D. A. Brenner, “Mechanisms of alcohol-induced hepatic fibrosis: a summary of the Ron Thurman symposium,” Hepatology, vol. 43, no. 4, pp. 872–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Tsukamoto, Y. Takei, C. J. McClain et al., “How is the liver primed or sensitized for alcoholic liver disease?” Alcoholism, vol. 25, supplement 5, pp. 171S–181S, 2001. View at Google Scholar · View at Scopus
  69. J. G. Pastorino and J. B. Hoek, “Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition,” Hepatology, vol. 31, no. 5, pp. 1141–1152, 2000. View at Google Scholar · View at Scopus
  70. H. Liu, B. E. Jones, C. Bradham, and M. J. Czaja, “Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-alpha,” American Journal Physiology-Gastrointestinal and Liver Physiology, vol. 282, no. 2, pp. G257–G266, 2002. View at Google Scholar
  71. Y. Lu and A. I. Cederbaum, “Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice: role of cytochrome P450 2E1 and 2A5,” Hepatology, vol. 44, no. 1, pp. 263–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Lu, X. Wang, and A. I. Cederbaum, “Lipopolysaccharide-induced liver injury in rats treated with the CYP2E1 inducer pyrazole,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 289, no. 2, pp. G308–G319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Wu and A. Cederbaum, “Cytochrome P4502E1 sensitizes to tumor necrosis factor alpha-induced liver injury through activation of mitogen-activated protein kinases in mice,” Hepatology, vol. 47, no. 3, pp. 1005–1017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Wu, C. Xu, and A. Cederbaum, “Role of nitric oxide and nuclear factor-kappaB in the CYP2E1 potentiation of tumor necrosis factor alpha hepatotoxicity in mice,” Free Radical Biology and Medicine, vol. 46, no. 4, pp. 480–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. Bailey, “A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction,” Free Radical Research, vol. 37, no. 6, pp. 585–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. B. Hoek, A. Cahill, and J. G. Pastorino, “Alcohol and mitochondria: a dysfunctional relationship,” Gastroenterology, vol. 122, no. 7, pp. 2049–2063, 2002. View at Google Scholar · View at Scopus
  77. J. Zhuge and A. I. Cederbaum, “Inhibition of the mitochondrial permeability transition by cyclosporin A prevents pyrazole plus lipopolysaccharide-induced liver injury in mice,” Free Radical Biology and Medicine, vol. 46, no. 3, pp. 406–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. A. McCubrey and R. A. Franklin, “Reactive oxygen intermediates and signaling through kinase pathways,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1745–1748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. T. W. Sturgill and J. Wu, “Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6,” Biochimica et Biophysica Acta, vol. 1092, no. 3, pp. 350–357, 1991. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Ichijo, E. Nishida, K. Irie et al., “Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways,” Science, vol. 275, no. 5296, pp. 90–94, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Bardag-Gorce, B. A. French, J. Dedes, J. Li, and S. W. French, “Gene expression patterns of the liver in response to alcohol: in vivo and in vitro models compared,” Experimental and Molecular Pathology, vol. 80, no. 3, pp. 241–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Li, F. Bardag-Gorce, J. Oliva, J. Dedes, B. A. French, and S. W. French, “Gene expression modifications in the liver caused by binge drinking and S-adenosylmethionine feeding. The role of epigenetic changes,” Genes and Nutrition, vol. 5, no. 2, pp. 169–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. A. R. Aroor, T. T. James, D. E. Jackson, and S. D. Shukla, “Differential changes in MAP kinases, histone modifications, and liver injury in rats acutely treated with ethanol,” Alcoholism, vol. 34, no. 9, pp. 1543–1551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Szuster-Ciesielska, K. Plewka, J. Daniluk, and M. Kandefer-Szerszen, “Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling,” Biochemical Pharmacology, vol. 78, no. 3, pp. 301–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Kishore, M. R. McMullen, and L. E. Nagy, “Stabilization of tumor necrosis factor alpha mRNA by chronic ethanol: role of A + U-rich elements and p38 mitogen-activated protein kinase signaling pathway,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 41930–41937, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Oak, P. Mandrekar, D. Catalano, K. Kodys, and G. Szabo, “TLR2- and TLR4-mediated signals determine attenuation or augmentation of inflammation by acute alcohol in monocytes,” Journal of Immunology, vol. 176, no. 12, pp. 7628–7635, 2006. View at Google Scholar · View at Scopus
  87. J. G. Pastorino, N. Shulga, and J. B. Hoek, “TNF-alpha-induced cell death in ethanol-exposed cells depends on p38 MAPK signaling but is independent of Bid and caspase-8,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 285, no. 3, pp. G503–G516, 2003. View at Google Scholar · View at Scopus
  88. M. J. Czaja, “The future of GI and liver research: editorial perspectives III. JNK/AP-1 regulation of hepatocyte death,” American Journal Physiology-Gastrointestinal and Liver Physiology, vol. 284, no. 6, pp. G875–G879, 2003. View at Google Scholar · View at Scopus
  89. B. K. Gunawan, Z. X. Liu, D. Han, N. Hanawa, W. A. Gaarde, and N. Kaplowitz, “c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity,” Gastroenterology, vol. 131, no. 1, pp. 165–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Liu, C. R. Lo, and M. J. Czaja, “NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun,” Hepatology, vol. 35, no. 4, pp. 772–778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. J. M. Schattenberg, R. Singh, Y. Wang et al., “JNK1 but not JNK2 promotes the development of steatohepatitis in mice,” Hepatology, vol. 43, no. 1, pp. 163–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Uehara, B. Bennett, S. T. Sakata et al., “JNK mediates hepatic ischemia reperfusion injury,” Journal of Hepatology, vol. 42, no. 6, pp. 850–859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Matsuzawa and H. Ichijo, “Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1325–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. J. M. Kyriakis and J. Avruch, “Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation,” Physiological Reviews, vol. 81, no. 2, pp. 807–869, 2001. View at Google Scholar · View at Scopus
  95. G. Fujino, T. Noguchi, A. Matsuzawa et al., “Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1,” Molecular and Cellular Biology, vol. 27, no. 23, pp. 8152–8163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Liu, H. Nishitoh, H. Ichijo, and J. M. Kyriakis, “Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin,” Molecular and Cellular Biology, vol. 20, no. 6, pp. 2198–2208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Wu and A. I. Cederbaum, “Oxidative stress and alcoholic liver disease,” Seminars in Liver Disease, vol. 29, no. 2, pp. 141–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Wang, A. Destrument, and C. Tournier, “Physiological roles of MKK4 and MKK7: insights from animal models,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1349–1357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Wullaert, K. Heyninck, and R. Beyaert, “Mechanisms of crosstalk between TNF-induced NF-κB and JNK activation in hepatocytes,” Biochemical Pharmacology, vol. 72, no. 9, pp. 1090–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Matsukawa, A. Matsuzawa, K. Takeda, and H. Ichijo, “The ASK1-MAP kinase cascades in mammalian stress response,” Journal of Biochemistry, vol. 136, no. 3, pp. 261–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Wu and A. Cederbaum, “Activation of ASK-1 and downstream MAP kinases in cytochrome P4502E1 potentiated tumor necrosis factor alpha liver injury,” Free Radical Biology and Medicine, vol. 49, no. 3, pp. 348–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Nakagawa, S. Maeda, Y. Hikiba et al., “Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N—Terminal kinase activation,” Gastroenterology, vol. 135, no. 4, pp. 1311–1321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Holmgren, “Thioredoxin,” Trends in Biochemical Sciences, vol. 54, pp. 237–271, 1985. View at Google Scholar
  104. T. Ebrahimian and R. M. Touyz, “Thioredoxin in vascular biology: role in hypertension,” Antioxidants and Redox Signaling, vol. 10, no. 6, pp. 1127–1136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Powis and W. R. Montfort, “Properties and biological activities of thioredoxins,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 261–295, 2001. View at Publisher · View at Google Scholar
  106. G. Powis and W. R. Montfort, “Properties and biological activities of thioredoxins,” Annual Review of Biophysics and Biomolecular Structure, vol. 30, pp. 421–455, 2001. View at Publisher · View at Google Scholar
  107. M. Saitoh, H. Nishitoh, M. Fujii et al., “Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1,” EMBO Journal, vol. 17, no. 9, pp. 2596–2606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  108. J. I. Cohen, S. Roychowdhury, P. M. DiBello, D. W. Jacobsen, and L. E. Nagy, “Exogenous thioredoxin prevents ethanol-induced oxidative damage and apoptosis in mouse liver,” Hepatology, vol. 49, no. 5, pp. 1709–1717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. L. Yang, D. Wu, X. Wang, and A. I. Cederbaum, “Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1-induced oxidative stress via an ASK-1-JNK1 pathway in HepG2 cells,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 185–196, 2011. View at Publisher · View at Google Scholar
  110. S. E. McKim, E. Gabele, F. Isayama et al., “Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice,” Gastroenterology, vol. 125, no. 6, pp. 1834–1844, 2003. View at Publisher · View at Google Scholar · View at Scopus