Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hepatology
Volume 2012 (2012), Article ID 950693, 13 pages
http://dx.doi.org/10.1155/2012/950693
Review Article

Multidisciplinary Pharmacotherapeutic Options for Nonalcoholic Fatty Liver Disease

Division of Clinical Nutrition, Department of Medical Dietetics, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama, Sakado 350-0295, Japan

Received 23 July 2012; Accepted 13 November 2012

Academic Editor: Stephen D. H. Malnick

Copyright © 2012 Kei Nakajima. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Kopelman, “Health risks associated with overweight and obesity,” Obesity Reviews, vol. 8, supplement 1, pp. 13–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Dixon, “The effect of obesity on health outcomes,” Molecular and Cellular Endocrinology, vol. 316, no. 2, pp. 104–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Neuschwander-Tetri and S. H. Caldwell, “Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference,” Hepatology, vol. 37, no. 5, pp. 1202–1219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Chalasani, Z. Younossi, J. E. Lavine et al., “The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association,” Hepatology, vol. 55, pp. 2005–2023, 2012. View at Google Scholar
  6. B. W. Smith and L. A. Adams, “Non-alcoholic fatty liver disease,” Critical Reviews in Clinical Laboratory Sciences, vol. 48, pp. 97–113, 2011. View at Google Scholar
  7. H. J. Kim, H. J. Kim, K. E. Lee et al., “Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults,” Archives of Internal Medicine, vol. 164, no. 19, pp. 2169–2175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Musso, R. Gambino, S. Bo et al., “Should nonalcoholic fatty liver disease be included in the definition of metabolic syndrome? A cross-sectional comparison with Adult Treatment Panel III criteria in nonobese nondiabetic subjects,” Diabetes Care, vol. 31, no. 3, pp. 562–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. K. Yap, C. O'Connor, D. R. Mager, G. Taylor, and E. A. Roberts, “Diagnostic challenges of nonalcoholic fatty liver disease (NAFLD) in children of normal weight,” Clinics and Research in Hepatology and Gastroenterology, vol. 35, pp. 500–505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Das, K. Das, P. S. Mukherjee et al., “Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease,” Hepatology, vol. 51, no. 5, pp. 1593–1602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. H. Chen, M. H. Huang, J. C. Yang et al., “Prevalence and risk factors of nonalcoholic fatty liver disease in an adult population of Taiwan: metabolic significance of nonalcoholic fatty liver disease in nonobese adults,” Journal of Clinical Gastroenterology, vol. 40, no. 8, pp. 745–752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Targher, L. Bertolini, F. Poli et al., “Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients,” Diabetes, vol. 54, no. 12, pp. 3541–3546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. A. Adams, J. F. Lymp, J. S. Sauver et al., “The natural history of nonalcoholic fatty liver disease: a population-based cohort study,” Gastroenterology, vol. 129, no. 1, pp. 113–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Targher, L. Bertolini, S. Rodella et al., “Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients,” Diabetes Care, vol. 30, no. 8, pp. 2119–2121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Ong, A. Pitts, and Z. M. Younossi, “Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease,” Journal of Hepatology, vol. 49, no. 4, pp. 608–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. E. Ruhl and J. E. Everhart, “Non-alcoholic fatty liver disease (NAFLD) and mortality,” Journal of Hepatology, vol. 51, no. 3, p. 593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Lazo, R. Hernaez, S. Bonekamp et al., “Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study,” BMJ, vol. 343, Article ID d6891, 2011. View at Google Scholar
  18. Y. Shi and P. Burn, “Lipid metabolic enzymes: emerging drug targets for the treatment of obesity,” Nature Reviews Drug Discovery, vol. 3, no. 8, pp. 695–710, 2004. View at Google Scholar · View at Scopus
  19. F. Conus, D. B. Allison, R. Rabasa-Lhoret et al., “Metabolic and behavioral characteristics of metabolically obese but normal-weight women,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 5013–5020, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. V. Dvorak, W. F. DeNino, P. A. Ades, and E. T. Poehlman, “Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women,” Diabetes, vol. 48, no. 11, pp. 2210–2214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Stefan, K. Kantartzis, J. Machann et al., “Identification and characterization of metabolically benign obesity in humans,” Archives of Internal Medicine, vol. 168, no. 15, pp. 1609–1616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. K. Schindhelm, M. Diamant, J. M. Dekker, M. E. Tushuizen, T. Teerlink, and R. J. Heine, “Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease,” Diabetes/Metabolism Research and Reviews, vol. 22, no. 6, pp. 437–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Chang, S. Ryu, E. Sung, and Y. Jang, “Higher concentrations of alanine aminotransferase within the reference interval predict nonalcoholic fatty liver disease,” Clinical Chemistry, vol. 53, no. 4, pp. 686–692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Ghouri, D. Preiss, and N. Sattar, “Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data,” Hepatology, vol. 52, no. 3, pp. 1156–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. G. Tolman and A. S. Dalpiaz, “Treatment of non-alcoholic fatty liver disease,” Therapeutics and Clinical Risk Management, vol. 3, no. 6, pp. 1153–1163, 2007. View at Google Scholar · View at Scopus
  26. J. Capeau, “Insulin resistance and steatosis in humans,” Diabetes & Metabolism, vol. 34, no. 6, pp. 649–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Meshkani and K. Adeli, “Hepatic insulin resistance, metabolic syndrome and cardiovascular disease,” Clinical Biochemistry, vol. 42, no. 13-14, pp. 1331–1346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Gustafson, “Adipose tissue, inflammation and atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 4, pp. 332–341, 2010. View at Google Scholar · View at Scopus
  29. K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, and E. J. Parks, “Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1343–1351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Shapiro, M. Tehilla, J. Attal-Singer, R. Bruck, R. Luzzatti, and P. Singer, “The therapeutic potential of long-chain omega-3 fatty acids in nonalcoholic fatty liver disease,” Clinical Nutrition, vol. 30, no. 1, pp. 6–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Ferré and F. Foufelle, “Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c,” Diabetes, Obesity and Metabolism, vol. 12, supplement 2, pp. 83–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. L. Kammoun, H. Chabanon, I. Hainault et al., “GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1201–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Ota, C. Gayet, and H. N. Ginsberg, “Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 316–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Browning and J. D. Horton, “Molecular mediators of hepatic steatosis and liver injury,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 147–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. M. Hussain and A. Bakillah, “New approaches to target microsomal triglyceride transfer protein,” Current Opinion in Lipidology, vol. 19, no. 6, pp. 572–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Fujita, K. Imajo, Y. Shinohara et al., “Novel findings for the development of drug therapy for various liver diseases: liver microsomal triglyceride transfer protein activator may be a possible therapeutic agent in non-alcoholic steatohepatitis,” Journal of Pharmacological Sciences, vol. 115, no. 3, pp. 270–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Schimmack, R. A. DeFronzo, and N. Musi, “AMP-activated protein kinase: role in metabolism and therapeutic implications,” Diabetes, Obesity and Metabolism, vol. 8, no. 6, pp. 591–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Lavine, J. B. Schwimmer, M. L. Van Natta et al., “Effect of vitamin e or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents the tonic randomized controlled trial,” Journal of the American Medical Association, vol. 305, no. 16, pp. 1659–1668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Musso, M. Cassader, F. Rosina, and R. Gambino, “Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials,” Diabetologia, vol. 55, pp. 885–904, 2012. View at Google Scholar
  40. G. A. Garinis, B. Fruci, A. Mazza et al., “Metformin versus dietary treatment in nonalcoholic hepatic steatosis: a randomized study,” International Journal of Obesity, vol. 34, no. 8, pp. 1255–1264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Bugianesi, E. Gentilcore, R. Manini et al., “A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease,” American Journal of Gastroenterology, vol. 100, no. 5, pp. 1082–1090, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Krakoff, J. M. Clark, J. P. Crandall et al., “Effects of metformin and weight loss on serum alanine aminotransferase activity in the diabetes prevention program,” Obesity, vol. 18, no. 9, pp. 1762–1767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Nair, A. M. Diehl, M. Wiseman, G. H. Farr Jr., and R. P. Perrillo, “Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial,” Alimentary Pharmacology and Therapeutics, vol. 20, no. 1, pp. 23–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. W. Haukeland, Z. Konopski, H. B. Eggesbø et al., “Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial,” Scandinavian Journal of Gastroenterology, vol. 44, no. 7, pp. 853–860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. B. M. Spiegelman, “Peroxisome proliferator-activated receptor gamma: a key regulator of adipogenesis and systemic insulin sensitivity,” European Journal of Medical Research, vol. 2, no. 11, pp. 457–464, 1997. View at Google Scholar · View at Scopus
  46. B. M. Spiegelman, “PPAR-γ: adipogenic regulator and thiazolidinedione receptor,” Diabetes, vol. 47, no. 4, pp. 507–514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Wang, R. Yin, Y. Liu, G. Mao, and F. Xi, “Role of peroxisome proliferator-activated receptor-γ in atherosclerosis: an update,” Circulation Journal, vol. 75, no. 3, pp. 528–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. J. Sanyal, N. Chalasani, K. V. Kowdley et al., “Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis,” The New England Journal of Medicine, vol. 362, no. 18, pp. 1675–1685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Shadid and M. D. Jensen, “Effect of pioglitazone on biochemical indices of non-alcoholic fatty liver disease in upper body obesity,” Clinical Gastroenterology and Hepatology, vol. 1, no. 5, pp. 384–387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. G. P. Aithal, J. A. Thomas, P. V. Kaye et al., “Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis,” Gastroenterology, vol. 135, no. 4, pp. 1176–1184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. I. Anghel and W. Wahli, “Fat poetry: a kingdom for PPARγ,” Cell Research, vol. 17, no. 6, pp. 486–511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Mandrup and M. D. Lane, “Regulating adipogenesis,” Journal of Biological Chemistry, vol. 272, no. 9, pp. 5367–5370, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. V. T. Samuel, K. F. Petersen, and G. I. Shulman, “Lipid-induced insulin resistance: unravelling the mechanism,” The Lancet, vol. 375, no. 9733, pp. 2267–2277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. O. Bourron, M. Daval, I. Hainault et al., “Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase,” Diabetologia, vol. 53, no. 4, pp. 768–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. B. Mayerson, R. S. Hundal, S. Dufour et al., “The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes,” Diabetes, vol. 51, no. 3, pp. 797–802, 2002. View at Google Scholar · View at Scopus
  56. W. H. W. Tang, “Do thiazolidinediones cause heart failure? A critical review,” Cleveland Clinic Journal of Medicine, vol. 73, no. 4, pp. 390–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Tzoulaki, M. Molokhia, V. Curcin et al., “Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database,” BMJ, vol. 339, p. b4731, 2009. View at Google Scholar · View at Scopus
  58. M. Yoneda, H. Endo, Y. Nozaki et al., “Life style-related diseases of the digestive system: gene expression in nonalcoholic steatohepatitis patients and treatment strategies,” Journal of Pharmacological Sciences, vol. 105, no. 2, pp. 151–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Y. Chang, C. K. Argo, A. M. S. Al-Osaimi, and S. H. Caldwell, “Therapy of NAFLD: antioxidants and cytoprotective agents,” Journal of Clinical Gastroenterology, vol. 40, supplement 1, pp. S51–S60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Parola, R. Muraca, I. Dianzani et al., “Vitamin E dietary supplementation inhibits transforming growth factor β1 gene expression in the rat liver,” FEBS Letters, vol. 308, no. 3, pp. 267–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  61. J. E. Lavine, “Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study,” Journal of Pediatrics, vol. 136, no. 6, pp. 734–738, 2000. View at Google Scholar · View at Scopus
  62. G. Ersöz, F. Günşar, Z. Karasu, S. Akay, Y. Batur, and U. S. Akarca, “Management of fatty liver disease with vitamin E and C compared to ursodeoxycholic acid treatment,” Turkish Journal of Gastroenterology, vol. 16, no. 3, pp. 124–128, 2005. View at Google Scholar · View at Scopus
  63. V. Nobili, M. Manco, R. Devito, P. Ciampalini, F. Piemonte, and M. Marcellini, “Effect of vitamin E on aminotransferase levels and insulin resistance in children with non-alcoholic fatty liver disease,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 11-12, pp. 1553–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. L. E. Adinolfi and L. Restivo, “Does vitamin e cure nonalcoholic steatohepatitis?” Expert Review of Gastroenterology and Hepatology, vol. 5, no. 2, pp. 147–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. E. R. Miller III, R. Pastor-Barriuso, D. Dalal, R. A. Riemersma, L. J. Appel, and E. Guallar, “Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality,” Annals of Internal Medicine, vol. 142, no. 1, pp. 37–46, 2005. View at Google Scholar · View at Scopus
  66. M. Dietrich, P. F. Jacques, M. J. Pencina et al., “Vitamin E supplement use and the incidence of cardiovascular disease and all-cause mortality in the Framingham Heart Study: does the underlying health status play a role?” Atherosclerosis, vol. 205, no. 2, pp. 549–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Gerss and W. Köpcke, “The questionable association of vitamin E supplementation and mortality—inconsistent results of different meta-analytic approaches,” Cellular and Molecular Biology, vol. 55, supplement 1, pp. 1111–1120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Ratziu, V. De Ledinghen, F. Oberti et al., “A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis,” Journal of Hepatology, vol. 54, no. 5, pp. 1011–1019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. S. Yang, J. T. Kim, J. Jeon et al., “Changes in hepatic gene expression upon oral administration of taurine-conjugated ursodeoxycholic acid in ob/ob mice,” PLoS ONE, vol. 5, no. 11, Article ID e13858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Duvnjak, V. Tomasic, M. Gomercic, L. Smircic Duvnjak, N. Barsic, and I. Lerotic, “Therapy of nonalcoholic fatty liver disease: current status,” Journal of Physiology and Pharmacology, vol. 60, supplement 7, pp. 57–66, 2009. View at Google Scholar · View at Scopus
  71. D. Mozaffarian and J. H. Wu, “Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events,” American College of Cardiology Foundation, vol. 58, pp. 2047–2067, 2011. View at Google Scholar
  72. D. B. Jump, “N-3 polyunsaturated fatty acid regulation of hepatic gene transcription,” Current Opinion in Lipidology, vol. 19, no. 3, pp. 242–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Wang, W. S. Harris, M. Chung et al., “n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 5–17, 2006. View at Google Scholar · View at Scopus
  74. H. Shapiro, M. Tehilla, J. Attal-Singer, R. Bruck, R. Luzzatti, and P. Singer, “The therapeutic potential of long-chain omega-3 fatty acids in nonalcoholic fatty liver disease,” Clinical Nutrition, vol. 30, no. 1, pp. 6–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Araya, R. Rodrigo, L. A. Videla et al., “Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease,” Clinical Science, vol. 106, no. 6, pp. 635–643, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. J. M. Petit, B. Guiu, L. Duvillard et al., “Increased erythrocytes n-3 and n-6 polyunsaturated fatty acids is significantly associated with a lower prevalence of steatosis in patients with type 2 diabetes,” Clinical Nutrition, vol. 31, pp. 520–525, 2012. View at Google Scholar
  77. J. Oya, T. Nakagami, S. Sasaki et al., “Intake of n-3 polyunsaturated fatty acids and non-alcoholic fatty liver disease: a cross-sectional study in Japanese men and women,” European Journal of Clinical Nutrition, vol. 64, no. 10, pp. 1179–1185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Sato, H. Kawano, T. Notsu et al., “Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis,” Diabetes, vol. 59, no. 10, pp. 2495–2504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Enjoji and M. Nakamuta, “Is the control of dietary cholesterol intake sufficiently effective to ameliorate nonalcoholic fatty liver disease?” World Journal of Gastroenterology, vol. 16, no. 7, pp. 800–803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Hirako, H. J. Kim, S. Shimizu, H. Chiba, and A. Matsumoto, “Low-dose fish oil consumption prevents hepatic lipid accumulation in high cholesterol diet fed mice,” Journal of Agricultural and Food Chemistry, vol. 59, supplement 1, pp. 13353–13359, 2011. View at Google Scholar
  81. J. Davignon, “Beneficial cardiovascular pleiotropic effects of statins,” Circulation, vol. 109, no. 23, pp. III39–III43, 2004. View at Google Scholar · View at Scopus
  82. N. Chalasani, H. Aljadhey, J. Kesterson, M. D. Murray, and S. D. Hall, “Patients with elevated liver enzymes are not at higher risk for statin hepatotoxicity,” Gastroenterology, vol. 126, no. 5, pp. 1287–1292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Vuppalanchi, E. Teal, and N. Chalasani, “Patients with elevated baseline liver enzymes do not have higher frequency of hepatotoxicity from lovastatin than those with normal baseline liver enzymes,” American Journal of the Medical Sciences, vol. 329, no. 2, pp. 62–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Hatzitolios, C. Savopoulos, G. Lazaraki et al., “Efficacy of omega-3 fatty acids, atorvastatin and orlistat in non-alcoholic fatty liver disease with dyslipidemia,” Indian Journal of Gastroenterology, vol. 23, no. 4, pp. 131–134, 2004. View at Google Scholar · View at Scopus
  85. M. Ekstedt, L. E. Franzén, U. L. Mathiesen, M. Holmqvist, G. Bodemar, and S. Kechagias, “Statins in non-alcoholic fatty liver disease and chronically elevated liver enzymes: a histopathological follow-up study,” Journal of Hepatology, vol. 47, no. 1, pp. 135–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Kiyici, M. Gulten, S. Gurel et al., “Ursodeoxycholic acid and atorvastatin in the treatment of nonalcoholic steatohepatitis,” Canadian Journal of Gastroenterology, vol. 17, no. 12, pp. 713–718, 2003. View at Google Scholar · View at Scopus
  87. T. Foster, M. J. Budoff, S. Saab, N. Ahmadi, C. Gordon, and A. D. Guerci, “Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease: the st francis heart study randomized clinical trial,” American Journal of Gastroenterology, vol. 106, no. 1, pp. 71–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Kimura, H. Hyogo, S. I. Yamagishi et al., “Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH,” Journal of Gastroenterology, vol. 45, no. 7, pp. 750–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Sattar, D. Preiss, H. M. Murray et al., “Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials,” The Lancet, vol. 375, no. 9716, pp. 735–742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. K. K. Koh, M. J. Quon, S. H. Han, Y. Lee, S. J. Kim, and E. K. Shin, “Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients,” Journal of the American College of Cardiology, vol. 55, no. 12, pp. 1209–1216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. E. N. Liberopoulos, V. G. Athyros, M. S. Elisaf, and D. P. Mikhailidis, “Statins for non-alcoholic fatty liver disease: a new indication?” Alimentary Pharmacology and Therapeutics, vol. 24, no. 4, pp. 698–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  93. B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J. C. Fruchart, “Mechanism of action of fibrates on lipid and lipoprotein metabolism,” Circulation, vol. 98, no. 19, pp. 2088–2093, 1998. View at Google Scholar · View at Scopus
  94. P. J. Barter and K. A. Rye, “Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 1, pp. 39–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. H. Frick, O. Elo, and K. Haapa, “Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease,” The New England Journal of Medicine, vol. 317, no. 20, pp. 1237–1245, 1987. View at Google Scholar · View at Scopus
  96. H. B. Rubins, S. J. Robins, D. Collins et al., “Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol,” The New England Journal of Medicine, vol. 341, no. 6, pp. 410–418, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Oliver, “A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the committee of principal investigators,” British Heart Journal, vol. 40, no. 10, pp. 1069–1118, 1978. View at Google Scholar · View at Scopus
  98. S. Behar, D. Brunner, E. Kaplinsky, L. Mandelzweig, and M. Benderly, “Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the bezafibrate infarction prevention (BIP) study,” Circulation, vol. 102, no. 1, pp. 21–27, 2000. View at Google Scholar · View at Scopus
  99. A. Keech, R. J. Simes, P. Barter et al., “Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial,” The Lancet, vol. 366, pp. 1849–1861, 2005. View at Google Scholar
  100. J. Laurin, K. D. Lindor, J. S. Crippin et al., “Ursodeoxycholic acid or clofibrate in the treatment of non-alcohol-induced steatohepatitis: a pilot study,” Hepatology, vol. 23, no. 6, pp. 1464–1467, 1996. View at Google Scholar · View at Scopus
  101. C. Fernández-Miranda, M. Pérez-Carreras, F. Colina, G. López-Alonso, C. Vargas, and J. A. Solís-Herruzo, “A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease,” Digestive and Liver Disease, vol. 40, no. 3, pp. 200–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Okopień, R. Krysiak, and Z. S. Herman, “Effects of short-term fenofibrate treatment on circulating markers of inflammation and hemostasis in patients with impaired glucose tolerance,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 5, pp. 1770–1778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. K. K. Koh, M. J. Quon, S. Lim et al., “Effects of fenofibrate therapy on circulating adipocytokines in patients with primary hypertriglyceridemia,” Atherosclerosis, vol. 214, no. 1, pp. 144–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Jeong and M. Yoon, “Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice,” Experimental and Molecular Medicine, vol. 41, no. 6, pp. 397–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. T. A. Jacobson, “Myopathy with statin-fibrate combination therapy: clinical considerations,” Nature Reviews Endocrinology, vol. 5, no. 9, pp. 507–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. P. D. Rosenblit, “Do persons with diabetes benefit from combination statin and fibrate therapy?” Current Cardiology Reports, vol. 14, no. 1, pp. 112–124, 2012. View at Google Scholar
  107. U. Khanderia, R. E. Regal, M. Rubenfire, and T. Boyden, “The ezetimibe controversy: implications for clinical practice,” Therapeutic Advances in Cardiovascular Disease, vol. 5, no. 4, pp. 199–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. S. W. Altmann, H. R. Davis Jr., L. J. Zhu et al., “Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption,” Science, vol. 303, no. 5661, pp. 1201–1204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. J. P. Davies, C. Scott, K. Oishi, A. Liapis, and Y. A. Ioannou, “Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia,” Journal of Biological Chemistry, vol. 280, no. 13, pp. 12710–12720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Ábel, J. Fehér, E. Dinya, M. G. Eldin, and A. Kovács, “Safety and efficacy of combined ezetimibe/simvastatin treatment and simvastatin monotherapy in patients with non-alcoholic fatty liver disease,” Medical Science Monitor, vol. 15, no. 12, pp. MS6–MS11, 2009. View at Google Scholar · View at Scopus
  111. M. Enjoji, K. Machida, M. Kohjima et al., “NPC1L1 inhibitor ezetimibe is a reliable therapeutic agent for non-obese patients with nonalcoholic fatty liver disease,” Lipids in Health and Disease, vol. 9, article 29, 2010. View at Google Scholar · View at Scopus
  112. H. Park, T. Shima, K. Yamaguchi et al., “Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease,” Journal of Gastroenterology, vol. 46, no. 1, pp. 101–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. S. A. Polyzos, J. Kountouras, C. Zavos, and E. Tsiaousi, “The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease,” Diabetes, Obesity and Metabolism, vol. 12, no. 5, pp. 365–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Giacchetti, L. A. Sechi, S. Rilli, and R. M. Carey, “The renin-angiotensin-aldosterone system, glucose metabolism and diabetes,” Trends in Endocrinology and Metabolism, vol. 16, no. 3, pp. 120–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. E. F. Georgescu, “Angiotensin receptor blockers in the treatment of NASH/NAFLD: could they be a first-class option?” Advances in Therapy, vol. 25, no. 11, pp. 1141–1174, 2008. View at Google Scholar · View at Scopus
  116. M. Weber, “Achieving blood pressure goals: should angiotensin II receptor blockers become first-line treatment in hypertension?” Journal of Hypertension, vol. 27, no. 5, pp. S9–S14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. W. J. Bommer, “Use of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker therapy to reduce cardiovascular events in high-risk patients: part 2,” Preventive Cardiology, vol. 11, no. 4, pp. 215–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. K. G. Parhofer, F. Münzel, and M. Krekler, “Effect of the angiotensin receptor blocker irbesartan on metabolic parameters in clinical practice: the DO-IT prospective observational study,” Cardiovascular Diabetology, vol. 6, article 36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. S. M. G. Kyvelou, G. P. Vyssoulis, E. A. Karpanou et al., “Effects of antihypertensive treatment with angiotensin II receptor blockers on lipid profile: an open multi-drug comparison trial,” Hellenic Journal of Cardiology, vol. 47, no. 1, pp. 21–28, 2006. View at Google Scholar · View at Scopus
  120. M. Schupp, J. Janke, R. Clasen, T. Unger, and U. Kintscher, “Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-γ activity,” Circulation, vol. 109, no. 17, pp. 2054–2057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. T. W. Kurtz, “Treating the metabolic syndrome: telmisartan as a peroxisome proliferator-activated receptor-gamma activator,” Acta Diabetologica, vol. 42, supplement 1, pp. S9–S16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Wada, H. Kenmochi, Y. Miyashita et al., “Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet,” Endocrinology, vol. 151, no. 5, pp. 2040–2049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Schäfer, C. Vogt, D. Fraccarollo et al., “Eplerenone improves vascular function and reduces platelet activation in diabetic rats,” Journal of Physiology and Pharmacology, vol. 61, no. 1, pp. 45–52, 2010. View at Google Scholar · View at Scopus
  124. S. A. Polyzos, J. Kountouras, E. Zafeiriadou et al., “Effect of spironolactone and vitamin E on serum metabolic parameters and insulin resistance in patients with nonalcoholic fatty liver disease,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 12, pp. 498–503, 2011. View at Google Scholar
  125. Y. F. Dong, L. Liu, K. Kataoka et al., “Aliskiren prevents cardiovascular complications and pancreatic injury in a mouse model of obesity and type 2 diabetes,” Diabetologia, vol. 53, no. 1, pp. 180–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. S. Kang, M. H. Lee, H. K. Song et al., “Aliskiren improves insulin resistance and ameliorates diabetic vascular complications in db/db mice,” Nephrology Dialysis Transplantation, vol. 26, no. 4, pp. 1194–1204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. C. L. Chou, Y. H. Lai, T. Y. Lin, T. J. Lee, and T. C. Fang, “Aliskiren prevents and ameliorates metabolic syndrome in fructose-fed rats,” Archives of Medical Science, vol. 7, no. 5, pp. 882–888, 2011. View at Google Scholar
  128. D. J. Drucker, S. I. Sherman, R. M. Bergenstal, and J. B. Buse, “The safety of incretin-based therapies—review of the scientific evidence,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 7, pp. 2027–2031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. R. K. Campbell, “Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus,” Clinical Therapeutics, vol. 33, no. 5, pp. 511–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. X. Ding, N. K. Saxena, S. Lin, N. Gupta, and F. A. Anania, “Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice,” Hepatology, vol. 43, no. 1, pp. 173–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Sharma, J. E. Mells, P. P. Fu, N. K. Saxena, and F. A. Anania, “GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy,” PLoS One, vol. 6, Article ID e25269, 2011. View at Google Scholar
  132. S. Ben-Shlomo, I. Zvibel, M. Shnell et al., “Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase,” Journal of Hepatology, vol. 54, no. 6, pp. 1214–1223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. M. E. Tushuizen, M. C. Bunck, P. J. Pouwels, J. H. T. van Waesberghe, M. Diamant, and R. J. Heine, “Incretin mimetics as a novel therapeutic option for hepatic steatosis,” Liver International, vol. 26, no. 8, pp. 1015–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. R. S. Starfford and D. C. Radlery, “National trends in antiobesity medication use,” Archives of Internal Medicine, vol. 163, pp. 1046–1050, 2003. View at Google Scholar
  135. K. Tziomalos, G. E. Krassas, and T. Tzotzas, “The use of sibutramine in the management of obesity and related disorders: an update,” Vascular Health and Risk Management, vol. 5, pp. 441–452, 2009. View at Google Scholar · View at Scopus
  136. G. A. Bray, “Lifestyle and pharmacological approaches to weight loss: efficacy and safety,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. s81–s88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Zelber-Sagi, A. Kessler, E. Brazowsky et al., “A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease,” Clinical Gastroenterology and Hepatology, vol. 4, no. 5, pp. 639–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. S. A. Harrison, W. Fecht, E. M. Brunt, and B. A. Neuschwander-Tetri, “Orlistat for overweight subjects with nonalcoholic steatohepatitis: a randomized, prospective trial,” Hepatology, vol. 49, no. 1, pp. 80–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. T. Yoshida, N. Sakane, T. Umekawa, K. Yoshioka, M. Kondo, and Y. Wakabayashi, “Usefulness of mazindol in combined diet therapy consisting of a low-calorie diet and Optifast in severely obese women,” International Journal of Clinical Pharmacology Research, vol. 14, no. 4, pp. 125–132, 1994. View at Google Scholar · View at Scopus
  140. T. Yoshida, T. Umekawa, Y. Wakabayashi, K. Yoshimoto, N. Sakane, and M. Kondo, “Anti-obesity and anti-diabetic effects of mazindol in yellow KK mice: its activating effect on brown adipose tissue thermogenesis,” Clinical and Experimental Pharmacology and Physiology, vol. 23, no. 6-7, pp. 476–482, 1996. View at Google Scholar · View at Scopus
  141. J. P. Després, A. Golay, and L. Sjöström, “Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2121–2134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. L. F. Van Gaal, A. M. Rissanen, A. J. Scheen, O. Ziegler, and S. Rössner, “Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study,” The Lancet, vol. 365, no. 9468, pp. 1389–1397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. A. H. Sam, V. Salem, and M. A. Ghatei, “Rimonabant: from RIO to Ban,” Journal of Obesity, vol. 2011, Article ID 432607, 2011. View at Google Scholar
  144. P. N. Patel and R. Pathak, “Rimonabant: a novel selective cannabinoid-1 receptor antagonist for of treatment obesity,” American Journal of Health-System Pharmacy, vol. 64, no. 5, pp. 481–489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Munro, K. L. Thomas, and M. Abu-Shaar, “Molecular characterization of a peripheral receptor for cannabinoids,” Nature, vol. 365, no. 6441, pp. 61–65, 1993. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Tam, V. K. Vemuri, J. Liu et al., “Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity .,” Journal of Clinical Investigation, vol. 120, pp. 2953–2966, 2010. View at Google Scholar
  147. T. Jourdan, L. Djaouti, L. Demizieux, J. Gresti, B. Vergès, and P. Degrace, “CB1 antagonism exerts specific molecular effects on visceral and subcutaneous fat and reverses liver steatosis in diet-induced obese mice,” Diabetes, vol. 59, no. 4, pp. 926–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. M. Soory, “Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: potential for therapeutic targeting,” Infectious Disorders, vol. 9, no. 4, pp. 400–414, 2009. View at Google Scholar · View at Scopus
  149. V. Cucciolla, A. Borriello, A. Oliva, P. Galletti, V. Zappia, and F. Della Ragione, “Resveratrol: from basic science to the clinic,” Cell Cycle, vol. 6, no. 20, pp. 2495–2510, 2007. View at Google Scholar · View at Scopus
  150. C. A. De La Lastra and I. Villegas, “Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications,” Molecular Nutrition and Food Research, vol. 49, no. 5, pp. 405–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. S. Gómez-Zorita, “Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress,” British Journal of Nutrition, vol. 107, pp. 202–210, 2012. View at Google Scholar
  152. L. Bujanda, E. Hijona, M. Larzabal et al., “Resveratrol inhibits nonalcoholic fatty liver disease in rats,” BMC Gastroenterology, vol. 8, article 40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Shang, L. L. Chen, F. X. Xiao, H. Sun, H. C. Ding, and H. Xiao, “Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase,” Acta Pharmacologica Sinica, vol. 29, no. 6, pp. 698–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. H. P. Cotrim, L. A. Freitas, E. Alves, A. Almeida, D. S. May, and S. Caldwell, “Effects of light-to-moderate alcohol consumption on steatosis and steatohepatitis in severely obese patients,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 9, pp. 969–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. T. Gunji, N. Matsuhashi, H. Sato et al., “Light and moderate alcohol consumption significantly reduces the prevalence of fatty liver in the japanese male population,” American Journal of Gastroenterology, vol. 104, no. 9, pp. 2189–2195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. A. Moriya, Y. Iwasaki, S. Ohguchi et al., “Alcohol consumption appears to protect against non-alcoholic fatty liver disease,” Alimentary Pharmacology and Therapeutics, vol. 33, no. 3, pp. 378–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. X. F. Wang and M. Yue, “Relationship between alcohol consumption and clinical manifestation of patients with fatty liver: a single-center study,” Hepatobiliary and Pancreatic Diseases International, vol. 10, no. 3, pp. 276–279, 2011. View at Google Scholar · View at Scopus
  158. M. Ekstedt, L. E. Franzén, M. Holmqvist et al., “Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease,” Scandinavian Journal of Gastroenterology, vol. 44, no. 3, pp. 366–374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. P. I. Alatalo, H. M. Koivisto, J. P. Hietala, K. S. Puukka, R. Bloigu, and O. J. Niemelä, “Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index,” American Journal of Clinical Nutrition, vol. 88, no. 4, pp. 1097–1103, 2008. View at Google Scholar · View at Scopus
  160. D. W. Crabb, “Alcohol deranges hepatic lipid metabolism via altered transcriptional regulation,” Transactions of the American Clinical and Climatological Association, vol. 115, pp. 273–287, 2004. View at Google Scholar · View at Scopus
  161. T. M. Donohue Jr., “Alcohol-induced steatosis in liver cells,” World Journal of Gastroenterology, vol. 13, no. 37, pp. 4974–4978, 2007. View at Google Scholar · View at Scopus
  162. M. S. Sozio, N. Chalasani, and S. Liangpunsakul, “What advice should be given to patients with NAFLD about the consumption of alcohol?” Nature Clinical Practice Gastroenterology and Hepatology, vol. 6, no. 1, pp. 18–19, 2009. View at Publisher · View at Google Scholar · View at Scopus